、如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA
发布网友
发布时间:2022-04-26 10:10
我来回答
共3个回答
热心网友
时间:2023-10-09 08:02
解:(1)在Rt△AOB中,OA=4,OB=3
∴AB=$\sqrt{{4^2}+{3^2}}=5$
①P由O向A运动时,OP=AQ=t,AP=4-t
过Q作QH⊥AP于H点.
由QH∥BO,得
$\frac{QH}{AQ}=\frac{OB}{AB},得QH=\frac{3}{5}t$
∴${S_{△APQ}}=\frac{1}{2}AP•QH=\frac{1}{2}(4-t)•\frac{3}{5}t$
即${S_{△APQ}}=-\frac{3}{10}{t^2}+\frac{6}{5}t$(0<t≤4)
②当4<t≤5时,即P由A向O运动时,AP=t-4AQ=t
sin∠BAO=$\frac{QH}{t}=\frac{3}{5}$
QH=$\frac{3}{5}t$,
∴$s△APQ=\frac{1}{2}(t-4)•\frac{3}{5}t$
=$\frac{3}{10}{t^2}-\frac{6}{5}t$;
(2)由题意知,此时△APQ≌△DPQ,∠AQP=90°,
∴cosA=$\frac{AQ}{AP}$=$\frac{OA}{AB}$=$\frac{4}{5}$,
当0<t≤4∴$\frac{t}{4-t}=\frac{4}{5}$即$t=\frac{16}{9}$
当4<t≤5时,$\frac{t}{4-t}=\frac{4}{5}$t=-16(舍去)
∴${S_{△APQ}}=-\frac{3}{10}{t^2}+\frac{6}{5}t=\frac{32}{27}$;
(3)存在,有以下两种情况
①若PE∥BQ,则等腰梯形PQBE中PQ=BE
过E、P分分别作EM⊥AB于M,PN⊥AB于N.
则有BM=QN,由PE∥BQ,
得$\frac{OE}{OB}=\frac{OP}{OA}$,
∴$BM=\frac{3}{5}(3-\frac{3}{4}t)$;
又∵AP=4-t,
∴AN=$\frac{4}{5}(4-t)$,
∴$QN=\frac{4}{5}(4-t)-t$,
由BM=QN,得$\frac{3}{5}(3-\frac{3}{4}t)=\frac{4}{5}(4-t)-t$
∴$t=\frac{28}{27}$,
∴$E(0,\frac{7}{9})$;
②若PQ∥BE,则等腰梯形PQBE中
BQ=EP且PQ⊥OA于P点
由题意知$AP=\frac{4}{5}AQ=\frac{4}{5}t$
∵OP+AP=OA∴$t+\frac{4}{5}t=4$
∴$t=\frac{20}{9}∴E(0,-\frac{15}{3})$t
由①②得E点坐标为$(0,\frac{7}{9})或(0,-\frac{15}{3})$;
(4)①当P由O向A运动时,OQ=OP=AQ=t.
可得∠QOA=∠QAO∴∠QOB=∠QBO
∴OQ=BQ=t∴BQ=AQ=$\frac{1}{2}$AE
∴$t=\frac{5}{2}$;
②当P由A向O运动时,OQ=OP=8-t
BQ=5-t,$QG=\frac{4}{5}(5-t),OG=3-\frac{3}{5}(5-t)$
在Rt△OGQ中,OQ2=RG2+OG2
即(8-t)2=${[\frac{4}{5}(5-t)]^2}+{[3-\frac{3}{5}(5-t)]^2}$
∴t=5•
【我表示我看不懂这个过程写些什么。。。】
热心网友
时间:2023-10-09 08:02
(1)作QF⊥AO于点F.
∴△AQF∽△ABO,
∴ QFBC=AQAB,
又AQ=OP=t,∴AP=3-t,BO= 52-32=4,
∴ QF/4= t/5,
∴QF= 4/5t,
∴S= 1/2(3-t)• 4/5t,
即S=- 2/5t2+ 6/5t
能.
①如图2,当DE∥QB时.
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形,
此时∠AQP=90°.
由△APQ∽△ABC,得 AQ/AC= AP/AB,
∴ t/3= 3-t/5,
解得t= 9/8;(6分)
②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABC,得 AQ/AB= AP/AC,
即 t/5= 3-t/3.
解得t= 15/8.
综上,可知当t= 98或 158时,四边形QBED能成为直角梯形.
热心网友
时间:2023-10-09 08:03
小盆友们,希望数学作业要多动脑筋啊。虽然百度能找到答案,但是不理解光抄作业的话是不能消化其内容的。好好学习才是正道,不然考试就杯具了哎。