发布网友 发布时间:2023-12-08 15:33
共1个回答
热心网友 时间:2024-03-10 11:24
反三角函数的性质是:反三角函数是个多值函数,其图像与其原函数关于函数y=x对称。
三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。反三角函数是一种基本初等函数。反三角函数是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx。
三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。欧拉提出反三角函数的概念,并且首先使用了arc+函数名的形式表示反三角函数。反三角函数是一类初等函数。
基本三角函数具有周期性,所以反三角函数是多值函数。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。
为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的y值都只能有惟一确定的x值与之对应。三角函数是以角度为自变量,角度对拦或应任意角终边与单位圆交点坐标或其比值为因变量的函数。
反三角函数常遵循的条件
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是间断的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsinx。