问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

Python中caloriesdb是什么?

发布网友 发布时间:2022-04-10 01:36

我来回答

2个回答

懂视网 时间:2022-04-10 05:57

1.行锁数据结构
    RocksDB锁粒度最小是行,对于KV存储而言,锁对象就是key,每一个key对应一个LockInfo结构。所有key通过hash表管理,查找锁时,直接通过hash表定位即可确定这个key是否已经被上锁。但如果全局只有一个hash表,会导致这个访问这个hash表的冲突很多,影响并发性能。RocksDB首先按Columnfamily进行拆分,每个Columnfamily中的锁通过一个LockMap管理,而每个LockMap再拆分成若干个分片,每个分片通过LockMapStripe管理,而hash表(std::unordered_map<std::string, LockInfo>)则存在于Stripe结构中,Stripe结构中还包含一个mutex和condition_variable,这个主要作用是,互斥访问hash表,当出现锁冲突时,将线程挂起,解锁后,唤醒挂起的线程。这种设计很简单但也带来一个显而易见的问题,就是多个不相关的锁公用一个condition_variable,导致锁释放时,不必要的唤醒一批线程,而这些线程重试后,发现仍然需要等待,造成了无效的上下文切换。对比我们之前讨论的InnoDB锁机制,我们发现InnoDB是一个page里面的记录复用一把锁,而且复用是有条件的,同一个事务对一个page的若干条记录加锁才能复用;而且锁等待队列是精确等待,精确到记录级别,不会导致的无效的唤醒。虽然RocksDB锁设计比较粗糙,但也做了一定的优化,比如在管理LockMaps时,通过在每个线程本地缓存一份拷贝lock_maps_cache_,通过全局链表将每个线程的cache链起来,当LockMaps变更时(删除columnfamily),则全局将每个线程的copy清空,由于columnfamily改动很少,所以大部分访问LockMaps操作都是不需要加锁的,提高了并发效率。
相关数据结构如下:

struct LockInfo {
bool exclusive; //排它锁或是共享锁
autovector<TransactionID> txn_ids; //事务列表,对于共享锁而言,同一个key可以对应多个事务

// Transaction locks are not valid after this time in us
uint64_t expiration_time;
}

struct LockMapStripe { 
// Mutex must be held before modifying keys map
std::shared_ptr<TransactionDBMutex> stripe_mutex;

// Condition Variable per stripe for waiting on a lock
std::shared_ptr<TransactionDBCondVar> stripe_cv;

// Locked keys mapped to the info about the transactions that locked them.
std::unordered_map<std::string, LockInfo> keys;
}

struct LockMap {
const size_t num_stripes_; //分片个数
std::atomic<int64_t> lock_cnt{0}; //锁数目
std::vector<LockMapStripe*> lock_map_stripes_; //锁分片
}

class TransactionLockMgr {
using LockMaps = std::unordered_map<uint32_t, std::shared_ptr<LockMap>>;
LockMaps lock_maps_;

// Thread-local cache of entries in lock_maps_. This is an optimization
// to avoid acquiring a mutex in order to look up a LockMap
std::unique_ptr<ThreadLocalPtr> lock_maps_cache_;
}

2.行锁空间代价
    由于锁信息是常驻内存,我们简单分析下RocksDB锁占用的内存。每个锁实际上是unordered_map中的一个元素,则锁占用的内存为key_length+8+8+1,假设key为bigint,占8个字节,则100w行记录,需要消耗大约22M内存。但是由于内存与key_length正相关,导致RocksDB的内存消耗不可控。我们可以简单算算RocksDB作为MySQL存储引擎时,key_length的范围。对于单列索引,最大值为2048个字节,具体可以参考max_supported_key_part_length实现;对于复合索引,索引最大长度为3072个字节,具体可以参考max_supported_key_length实现。假设最坏的情况,key_length=3072,则100w行记录,需要消耗3G内存,如果是锁1亿行记录,则需要消耗300G内存,这种情况下内存会有撑爆的风险。因此RocksDB提供参数配置max_row_locks,确保内存可控,默认RDB_MAX_ROW_LOCKS设置为1G,对于大部分key为bigint场景,极端情况下,也需要消耗22G内存。而在这方面,InnoDB则比较友好,hash表的key是(space_id, page_no),所以无论key有多大,key部分的内存消耗都是恒定的。前面我也提到了InnoDB在一个事务需要锁大量记录场景下是有优化的,多个记录可以公用一把锁,这样也间接可以减少内存。

3.上锁流程分析
    前面简单了解了RocksDB锁数据结构的设计以及锁对内存资源的消耗。这节主要介绍几种典型场景下,RocksDB是如何加锁的。与InnoDB一样,RocksDB也支持MVCC,读不上锁,为了方便,下面的讨论基于RocksDB作为MySQL的一个引擎来展开,主要包括三类,基于主键的更新,基于二级索引的更新,基于主键的范围更新等。在展开讨论之前,有一点需要说明的是,RocksDB与InnoDB不同,RocksDB的更新也是基于快照的,而InnoDB的更新基于当前读,这种差异也使得在实际应用中,相同隔离级别下,表现有所不一样。对于RocksDB而言,在RC隔离级别下,每个语句开始都会重新获取一次快照;在RR隔离级别下,整个事务中只在第一个语句开始时获取一次快照,所有语句共用这个快照,直到事务结束。

3.1.基于主键的更新
这里主要接口是TransactionBaseImpl::GetForUpdate
1).尝试对key加锁,如果锁被其它事务持有,则需要等待
2).创建snapshot
3).调用ValidateSnapshot,Get key,通过比较Sequence判断key是否被更新过
4).由于是加锁后,再获取snapshot,所以检查一定成功。
5).执行更新操作
这里有一个延迟获取快照的机制,实际上在语句开始时,需要调用acquire_snapshot获取快照,但为了避免冲突导致的重试,在对key加锁后,再获取snapshot,这就保证了在基于主键更新的场景下,不会存在ValidateSnapshot失败的场景。

堆栈如下:

1-myrocks::ha_rocksdb::get_row_by_rowid
2-myrocks::ha_rocksdb::get_for_update
3-myrocks::Rdb_transaction_impl::get_for_update
4-rocksdb::TransactionBaseImpl::GetForUpdate
{
//加锁
5-rocksdb::TransactionImpl::TryLock
 6-rocksdb::TransactionDBImpl::TryLock
 7-rocksdb::TransactionLockMgr::TryLock 

 //延迟获取快照,与acquire_snapshot配合使用
 6-SetSnapshotIfNeeded()

 //检查key对应快照是否过期
 6-ValidateSnapshot
 7-rocksdb::TransactionUtil::CheckKeyForConflict
 8-rocksdb::TransactionUtil::CheckKey
 9-rocksdb::DBImpl::GetLatestSequenceForKey //第一次读取

//读取key
5-rocksdb::TransactionBaseImpl::Get
 6-rocksdb::WriteBatchWithIndex::GetFromBatchAndDB
 7-rocksdb::DB::Get
 8-rocksdb::DBImpl::Get
 9-rocksdb::DBImpl::GetImpl //第二次读取
}

3.2.基于主键的范围更新
1).创建Snapshot,基于迭代器扫描主键
2).通过get_row_by_rowid,尝试对key加锁
3).调用ValidateSnapshot,Get key,通过比较Sequence判断key是否被更新过
4).如果key被其它事务更新过(key对应的SequenceNumber比Snapshot要新),触发重试
5).重试情况下,会释放老的快照并释放锁,通过tx->acquire_snapshot(false),延迟获取快照(加锁后,再拿snapshot)
5).再次调用get_for_update,由于此时key已经被加锁,重试一定可以成功。
6).执行更新操作
7).跳转到1,继续执行,直到主键不符合条件时,则结束。

3.3.基于二级索引的更新
这种场景与3.2类似,只不过多一步从二级索引定位主键过程。
1).创建Snapshot,基于迭代器扫描二级索引
2).根据二级索引反向找到主键,实际上也是调用get_row_by_rowid,这个过程就会尝试对key加锁
3).继续根据二级索引遍历下一个主键,尝试加锁
4).当返回的二级索引不符合条件时,则结束

3.4 与InnoDB加锁的区别
      前面我们说到了RocksDB与InnoDB的一点区别是,对于更新场景,RocksDB仍然是快照读,而InnoDB是当前读,导致行为上的差异。比如在RC隔离级别下的范围更新场景,比如一个事务要更新1000条记录,由于是边扫描边加锁,可能在扫描到第999条记录时,发现这个key的Sequence大于扫描的快照(这个key被其它事务更新了),这个时候会触发重新获取快照,然后基于这个快照拿到最新的key值。InnoDB则没有这个问题,通过当前读,扫描过程中,如果第999条记录被更新了,InnoDB可以直接看到最新的记录。这种情况下,RocksDB和InnoDB看到的结果是一样的。在另外一种情况下,假设也是扫描的范围中,新插入了key,这key的Sequence毫无疑问会比扫描的Snapshot要大,因此在Scan过程中这个key会被过滤掉,也就不存在所谓的冲突检测了,这个key不会被找到。更新过程中,插入了id为1和900的两条记录,最后第900条记录由于不可见,所以更新不到。而对于InnoDB而言,由于是当前读,新插入的id为900的记录可以被看到并更新,所以这里是与InnoDB有区别的地方。
      除了更新基于快照这个区别以外,RocksDB在加锁上也更简洁,所有加锁只涉及唯一索引,具体而言,在更新过程中,只对主键加锁;更新列涉及唯一约束时,需要加锁;而普通二级索引,则不用加锁,这个目的是为了避免唯一约束冲突。这里面,如果更新了唯一约束(主键,或者唯一索引),都需要加锁。而InnoDB则是需要对每个索引加锁,比如基于二级索引定位更新,则二级索引也需要加锁。之所以有这个区别是,是因为InnoDB为了实现RR隔离级别。这里稍微讲下隔离级别,实际上MySQL中定义的RR隔离级别与SQL标准定义的隔离级别有点不一样。SQL标准定义RR隔离级别解决不可重复读的问题,Serializable隔离级别解决幻读问题。不可重复读侧重讲同一条记录值不会修改;而幻读则侧重讲两次读返回的记录条数是固定的,不会增加或减少记录数目。MySQL定义RR隔离级别同时解决了不可重复读和幻读问题,而InnoDB中RR隔离级别的实现就是依赖于GAP锁。而RocksDB不支持GAP锁(仅仅支持唯一约束检查,对不存在的key加锁),因为基于快照的机制可以有效过滤掉新插入的记录,而InnoDB由于当前读,导致需要通过间隙锁禁止其它插入,所以二级索引也需要加锁,主要是为了锁间隙,否则两次当前读的结果可能不一样。当然,对RC割裂级别,InnoDB普通二级索引也是没有必要加锁的。

4.死锁检测算法
      死锁检测采用DFS((Depth First Search,深度优先算法),基本思路根据加入等待关系,继续查找被等待者的等待关系,如果发现成环,则认为发生了死锁,当然在大并发系统下,锁等待关系非常复杂,为了将死锁检测带来的资源消耗控制在一定范围,可以通过设置deadlock_detect_depth来控制死锁检测搜索的深度,或者在特定业务场景下,认为一定不会发生死锁,则关闭死锁检测,这样在一定程度上有利于系统并发的提升。需要说明的是,如果关闭死锁,最好配套将锁等待超时时间设置较小,避免系统真发生死锁时,事务长时间hang住。死锁检测基本流程如下:
1.定位到具体某个分片,获取mutex
2.调用AcquireLocked尝试加锁
3.若上锁失败,则触发进行死锁检测
4.调用IncrementWaiters增加一个等待者
5.如果等待者不在被等待者map里面,则肯定不会存在死锁,返回
6.对于被等待者,沿着wait_txn_map_向下检查等待关系,看看是否成环
7.若发现成环,则将调用DecrementWaitersImpl将新加入的等待关系解除,并报死锁错误。

相关的数据结构:

class TransactionLockMgr {
// Must be held when modifying wait_txn_map_ and rev_wait_txn_map_.
std::mutex wait_txn_map_mutex_;

// Maps from waitee -> number of waiters.
HashMap<TransactionID, int> rev_wait_txn_map_;

// Maps from waiter -> waitee.
HashMap<TransactionID, autovector<TransactionID>> wait_txn_map_;

DecrementWaiters //

IncrementWaiters //
}

struct TransactionOptions {
bool deadlock_detect = false; //是否检测死锁
int64_t deadlock_detect_depth = 50; //死锁检测的深度
int64_t lock_timeout = -1; //等待锁时间,线上一般设置为5s
int64_t expiration = -1; //持有锁时间,
}

参考文档
https://github.com/mdcallag/mytools/wiki/Cursor-Isolation
https://www.postgresql.org/docs/9.4/static/transaction-iso.html
https://github.com/facebook/mysql-5.6/issues/340
http://www.cnblogs.com/digdeep/p/4947694.html
http://www.cnblogs.com/digdeep/archive/2015/11/16/4968453.html

RocksDB上锁机制

标签:结构   odi   深度优先   空间   hang   范围   数据结构   isolation   shared   

热心网友 时间:2022-04-10 03:05

存储引擎如下:MMAP:
WiredTiger:3.2版本默认存储引擎都改为了wiredtiger,特性为:文档级别锁,解决了锁粒度过大的问题,磁盘数据压缩,删除数据时,数据会立即删除,MongoDB3.0在多线程、批量插入场景下较之于MongoDB2.6有大约4-7倍的增长
RocksDB:特性:顺序写入:LSM Tree结构,随机写入转换为顺序写入;速度稳定:和WiredTiger相比,写速度稳定
Memory
底层存储机制:空间局部性原理,B树
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
苹果电脑电池充不进电苹果电脑充不进去电是怎么回事 苹果电脑不充电没反应苹果电脑充电指示灯不亮充不了电怎么办 狗狗更加忠诚护家、善解人意,养一只宠物陪伴自己,泰迪能长多大... 描写泰迪狗的外形和特点的句子 国外留学有用吗 花钱出国留学有用吗 !这叫什么号 百万医疗赔付后是否可以续保 前一年理赔过医疗险还能续保吗? 医疗住院险理赔后还能购买吗? 在天王手表专柜拆卸手表的带子是不是都需要收费 商场的美度专柜都可以截取表带吗 兰博基尼 Essenza SCV12发布,速度最快的赛道用车 火车票机选票怎么订连号票? 专柜可以拆表带吗 因生日结缘的保时捷911-992S,附上改装折腾记,魅力的绽放 限量40台的赛道版超跑 约等于赛车的兰博基尼Essenza SCV12 理性改装 汽车改装排气你到底知道多少 网上订票如何才能订到连号的卧铺? 兰博基尼Essenza SCV12正式发布 限量40台/最大功率超830马力 用改装的方式打造出这两台“原装”保时捷356? 铁道部12306网站买票,怎么才能买到多张连号的车票? 五阶改装升级可达1,010马力 Wheelsandmore奥迪RS6 如何把一辆兰博基尼改成美人豹? 淘宝上1880买了卡地亚篮气球有保修卡 手机能扫出来 可以拿去专柜卸表带吗? 拥有纯正法拉利血统的法拉利360 Modena,真正的梦想之车! glc43排气怎样才有回火声 怎样买到连号的火车票!! 兰博基尼lp700改装多少种排气 不一样的保时捷Cayman,TechArtT2静态欣赏 ipe排气和天蝎akrapovic排气哪个牌子比较好? 什么是自主招生 自主招生的影响意义 怀孕一个多月可以跑步吗 刚怀孕跑步有没有影响 刚怀孕跑步了会怎么样 怀孕一个月跑步会怎样 刚怀孕能不能做跑步运动? 如果怀孕,跑步会怎样 怀孕了可以跳绳跑步吗 cache什么意思 女性怀孕后还能跑步吗 怀孕了可以继续跑步吗 怀孕前三个月可以跑步锻炼吗 如果真的怀孕了,第二天能跑步吗 怀孕不到一个月就做跑步等剧烈运动会有什么后果? cache啥意思 股市glc是什么意思 发彩信为什么价格高? glc中文是什么意思 电信彩信多少钱一条?