问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

数学的 最小二乘法 是什么

发布网友 发布时间:2022-05-01 14:52

我来回答

3个回答

热心网友 时间:2023-10-20 04:54

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

热心网友 时间:2023-10-20 04:54

最小二乘法原理在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
  Y计= a0 + a1 X (式1-1)
  其中:a0、a1 是任意实数
  为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。
  令: φ = ∑(Yi - Y计)2 (式1-2)
  把(式1-1)代入(式1-2)中得:
  φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
  当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
  (式1-4)
  (式1-5)
  亦即:
  m a0 + (∑Xi ) a1 = ∑Yi (式1-6)
  (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)
  得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
  a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)
  a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)
  这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。
  在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
  R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
  在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。

热心网友 时间:2023-10-20 04:55

它是统计学里的线性回归里面用的方法,是由高斯发现的,有叫做最小平方法,即离最优曲线的点解。

热心网友 时间:2023-10-20 04:54

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

热心网友 时间:2023-10-20 04:54

最小二乘法原理在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
  Y计= a0 + a1 X (式1-1)
  其中:a0、a1 是任意实数
  为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。
  令: φ = ∑(Yi - Y计)2 (式1-2)
  把(式1-1)代入(式1-2)中得:
  φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
  当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
  (式1-4)
  (式1-5)
  亦即:
  m a0 + (∑Xi ) a1 = ∑Yi (式1-6)
  (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)
  得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
  a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)
  a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)
  这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。
  在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
  R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
  在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。

热心网友 时间:2023-10-20 04:55

它是统计学里的线性回归里面用的方法,是由高斯发现的,有叫做最小平方法,即离最优曲线的点解。

热心网友 时间:2023-10-20 04:54

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

热心网友 时间:2023-10-20 04:54

最小二乘法原理在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
  Y计= a0 + a1 X (式1-1)
  其中:a0、a1 是任意实数
  为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。
  令: φ = ∑(Yi - Y计)2 (式1-2)
  把(式1-1)代入(式1-2)中得:
  φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
  当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
  (式1-4)
  (式1-5)
  亦即:
  m a0 + (∑Xi ) a1 = ∑Yi (式1-6)
  (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)
  得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
  a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)
  a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)
  这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。
  在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
  R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
  在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。

热心网友 时间:2023-10-20 04:55

它是统计学里的线性回归里面用的方法,是由高斯发现的,有叫做最小平方法,即离最优曲线的点解。

热心网友 时间:2023-10-20 04:54

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

热心网友 时间:2023-10-20 04:54

最小二乘法原理在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
  Y计= a0 + a1 X (式1-1)
  其中:a0、a1 是任意实数
  为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。
  令: φ = ∑(Yi - Y计)2 (式1-2)
  把(式1-1)代入(式1-2)中得:
  φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
  当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
  (式1-4)
  (式1-5)
  亦即:
  m a0 + (∑Xi ) a1 = ∑Yi (式1-6)
  (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)
  得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
  a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)
  a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)
  这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。
  在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
  R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
  在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。

热心网友 时间:2023-10-20 04:55

它是统计学里的线性回归里面用的方法,是由高斯发现的,有叫做最小平方法,即离最优曲线的点解。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
说课包括哪些方面 说课内容包括()。 如何在手机百度上删除对话记录? 结核病是什么样的疾病? 曹丕17岁得了肺痨,明知自己命不长久,还要强争王位,是不是很自私呢?_百... 古代小说常出现的病名 急求一篇"生活小窍门"(500字)的作文 至今最有什么小妙招 健康的戒烟方法 笔记本电池锁死是什么原因引起的? 2钱(川贝)是多少克或两 成都医保买了多少年可以停 这个是川贝母吗?在网上买的15元50克,是不是不正常... 成都医保中断不能超几个月 成都市医保,是不间断买满15年还是累计买满15年就可以不买了? 现在成都医保可以中断吗? 去医院开了15付中药1400多块钱!我震惊了 什么是最小二乘法及其原理? 请问成都市社会医疗保险能够中途能够中断吗? 最小二乘法建模中相关系数取值范围是 关于大学物理实验的问题。相关系数r只是最小二乘法里有的吗?逐差法里有吗? 成都医保断交有什么影响 出租车打表怎么算380十多公里?多少钱? 最小二乘法的相关系数怎么求 成都社保医保可以断吗 成都市医保可以断吗 最近我的牙龈老是出血是怎么回事啊?有什么办法治吗? 为什么我的牙龈老是出血??? 为什么我牙龈老是出血,睡觉醒来嘴唇都是沾着血渍,刷牙牙龈出血。吃东西牙龈出血,这要怎么治呢, 一觉醒来牙龈出血了……老是这样。。各位宝妈有没有啊? 我想知道出租车的计价器的计费到底是怎么算的?为什么天天打车同样的路线上班,价钱却不一样呢? 成都市医疗保险可以断几个月 最小二乘估计对样本数据有要求吗? 最小二乘原理 苹果airpod可以维修吗 离婚债务协议书怎么写 离婚协议书中债务应该怎么写? 离婚协议书债务归男方怎么写 离婚协议债务怎么写 离婚协议书上涉及到离婚债务怎么写 离婚协议书债务问题怎么写明 离婚协议书关于债务问题怎么写 怎么写离婚协议书中不知道债务 求一款手机推荐 安卓充值哔哩哔哩漫画ios能用吗? 场控欢迎词 有哪些? 360压缩包注释怎么查看 怎么看RAR压缩文件的注释信息,,RAR的压缩文件,说是有注释信息,怎么查看。 怎样察看压缩包注释? 已经压缩好的压缩文件没有注释,怎样才能添加注释