发布网友 发布时间:2023-11-19 21:09
共1个回答
热心网友 时间:2024-11-30 18:10
有理数的相反数一定比0小。
拓展知识
有理数是整数和分数的统称,是整数和分数的集合。整数也可看作是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数的分类
有理数的分类按不同的标准有按定义分类、按符号进行分类两种;按定义分类有理数分为整数、分数;按符号进行分类有理数分为正有理数、零、负有理数。小数可以化为分数,所以把小数看成分数。
混合运算法则
有理数的加减乘除混合运算,如无括号指出先做什么运算,按照“先乘除,后加减”的顺序进行,如果是同级运算,则按照从左到右的顺序依次计算。
整数
整数,是序列{...,-3,-2,-1,0,1,2,3,...}中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示为粗体Z或,源于德语单词Zahlen(意为“数”)的首字母。
在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。
全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z是一个加法循环群,因为任何整数都是若干个1或-1的和。1和-1是Z仅有的两个生成元。每个元素个数为无穷个的循环群都与(Z,+)同构。