发布网友 发布时间:2022-05-01 23:50
共1个回答
热心网友 时间:2022-06-25 06:26
对过程的概率结构作各种假设,便得到各类特殊的随机过程。除上述正态过程、二阶过程外,重要的还有独立增量过程、马尔可夫过程、平稳过程、鞅点过程和分支过程等。贯穿这些过程类的有两个最重要最基本的过程,布朗运动和泊松过程,它们的结构比较简单,便于研究而应用又很广泛。从它们出发,可以构造出许多其他过程。这两种过程的轨道性质不同,前者连续而后者则是上升的阶梯函数。
广义过程正如从普通函数发展到广义函数一样,随机过程也可发展到广义过程。设D为R上全体无穷次可微且支集有界的实值函数φ的集,定义在D上的连续线性泛函称为广义函数、全体广义函数的集记为Dx。考虑D×Ω上的二元函数x(φ,ω),如果对固定的ω,x(·,ω)∈Dx是广义函数,而对固定的φ,x(φ,·)是随机变量,则称{x(φ,ω):φ∈D}为定义在(Ω,F,p)上的广义过程。它在φ1,φ2,…,φn上的联合分布为
全体这种联合分布构成了广义过程x的有穷维分布族。前两阶矩分别称为均值泛函和相关泛函。
根据有穷维分布族的性质,也可以定义特殊的广义过程类,象广义平稳过程、广义正态过程等。例如,若对D中任意有限个线性独立函数φ1,φ2,…,φn,有限维分布都是正态分布,则称x={x(φ,ω)}为广义正态过程。