第十八章 平行四边形 的答案 很急,快啊,最快最好的就给采纳
发布网友
发布时间:2022-05-02 01:00
我来回答
共1个回答
热心网友
时间:2022-06-25 21:18
解:(1)四边形ACEF是平行四边形;
证明:∵DE垂直平分BC,
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形;
(2)当∠B=30°时,四边形ACEF为菱形;
证明:要使得平行四边形ACEF为菱形,则AC=CE即可,
∵CE= 12AB,
∴AC= 12AB即可,
在Rt△ABC中,∠ACB=90°,
∴当∠B=30°时,AB=2AC,
故∠B=30°时,四边形ACEF为菱形;
(3)四边形ACEF不可能是正方形,
因为由已知,∠ACB=90°,
∴∠ACE<∠ACB,
即∠ACE<90°,不能为直角,
所以四边形ACEF不可能是正方形.