发布网友 发布时间:2023-11-26 12:59
共1个回答
热心网友 时间:2024-01-02 22:01
一阶导数反映的是函数斜率,而二阶导数反映的是斜率变化的快慢,表现在函数的图像上就是函数的凹凸性。
f′′(x)>0,开口向上,函数为凹函数,f′′(x)<0,开口向下,函数为凸函数。
凸凹性的直观理解:
设函数y=f(x)在区间I上连续,如果函数的曲线位于其上任意一点的切线的上方,则称该曲线在区间I上是凹的;如果函数的曲线位于其上任意一点的切线的下方,则称该曲线在区间I上是凸的。
确定曲线y=f(x)的凹凸区间和拐点的步骤:
1、确定函数y=f(x)的定义域;
2、求出在二阶导数f"(x);
3、求出使二阶导数为零的点和使二阶导数不存在的
点;
4、判断或列表判断,确定出曲线凹凸区间和拐点。