发布网友 发布时间:2022-05-01 21:29
共1个回答
热心网友 时间:2022-06-23 19:58
煤矸石、矿坑废水的化学组分是研究其迁移、聚集过程,形成污染的基本出发点。
(1)煤矸石的成分及酸化成因
野外调查和采样结果表明,三号井的煤矸石堆主要由炭质泥岩、炭质页岩、杂砂岩和少量石灰岩的碎块组成。在自然堆放情况下,大小混杂,无分选,其中块径大于10cm 的煤矸石约占29%、块径5~10cm 约占22%、块径3~5cm 约占14%、块径1~3cm 约占22%、块径0.5~1cm 约占8%,其余为块径小于0.5cm 的碎屑。炭质泥岩和炭质页岩占据的比例较高。这类岩块不仅炭质含量高,还有大量肉眼可识别的黄铁矿晶体聚集体和散晶,有些外表呈现硫化物的*或磁铁矿的锈痕。除此之外,X 衍射物相分析表明,煤矸石中还含有比例不等的绿泥石、伊利石、石英和黏土类矿物(表4.2)。
利用ICP-AEs仪器测定,煤矸石碎屑混合样所含的化学成分中,铁、硫的含量十分高,其中铁的含量达148.76g/kg,有效态达4.57g/kg;硫的含量达117.82g/kg,有效态达1.45g/kg,其他化学成分远小于铁和硫,详细情况见表4.3。
由此推算,现堆放的煤矸石山约有4.75×104t铁、1.45×104t硫和相当数量的重金属元素。在酸性水环境中可溶解脱出,随渗出液迁移到下游地区,从而形成矿区一个长期的污染源。
表4.2 大峪沟三号井田煤矸石矿物组成
表4.3 大峪沟三号井田煤矸石化学组分含量(单位:mg/kg)
因为煤矸石中普遍含硫量高而且主要以黄铁矿形式赋存,在风化雨淋过程中缓慢氧化成Fe2O3和SO2,与水作用形成Fe2(SO4)3和H2SO4,这样,一部分硫以气态的形式排放到大气中,还有部分以离子方式进入水体和土壤,从而引起酸化。
(2)矿坑废水的化学组分及成因
据2007年8月9日采集的水样测试分析结果(表4.4,表4.5),矿坑废水化学组分有如下特点:
1)总含盐量高,其中矿化度达2400mg/L,相当于咸水-微咸水类型,水中悬浮状固形物为2400mg/L,其成分主要为石膏及非晶质物质。
2)阳离子中以碱金属和碱土金属离子为主。钾、钠、钙、镁离子总量占阳离子总量的90%以上,阴离子中硫酸根含量极高,达1685mg/L,占全部阴离子的90%以上,而重碳酸根离子仅为3.05mg/L。
3)重金属以锌锰为主,分别为2.4mg/L、1.8mg/L,铜、砷、铅、镉、六价铬含量甚微,均小于0.05mg/L。
4)pH值为3.07,属酸性水。这些特点与矿坑废水形成的条件有着直接关系。
现排放的矿坑水大部分来自一1煤围岩的裂隙水、岩溶水,从一1煤和煤矸石的化学成分可知,这些地层含硫、铁极高。在巷道开拓、回采之前,这些物质处于还原环境,大部分以难溶的硫化物形式封存于地下,一旦人工揭露,巷道和采掘面形成氧化环境,矿坑水酸度就会变大。酸度增高的机理有三个方面:
表4.4 矿坑水排水口、矿井口水样测试数据(单位:mg/L)
注:取样地点,矿坑水排水口(N34°43'02.46″、E113°05'43.28″);室内编号,856。
矿井口(未加中和剂)(N34°43'07.40″、E113°05'35.26″);室内编号,857。
取样时间,2007年7月。
表4.5 矿坑水排水口、矿井口水样测试数据(单位:mg/L)
注:取样地点,矿坑水排水口(N34°43'02.46″、E113°05'43.28″);室内编号,1323。
矿井口(未加中和剂)(N34°43'07.40″、E113°05'35.26″);室内编号,1462。
取样时间,2007年11月。
一是煤层和顶底板中含硫化合物在氧气、水共存条件下,氧化形成游离的H2SO4,反应方程式为
煤矿山地质环境问题一体化治理研究
二是式(4.1)中铁等金属的硫酸盐水解释放H+,其反应过程为
煤矿山地质环境问题一体化治理研究
三是地下水中H2CO3的分解。在大峪沟一1煤井巷的条件下,硫化物的氧化和硫酸铁的水解对矿坑水的酸化影响最为突出。此外,H2CO3的分解也将带出一定量的Ca2+、Mg2+。由于H2SO4浸溶又有可能使Ca、Zn等金属转化为硫酸盐,使之从矿物中析出。在上述反应中,硫化细菌起着重要的催化作用,巷道良好的通风条件,适宜的湿度,促使诸如硫杆菌属的细菌大量繁殖,加速Fe2+氧化速度并从中获得自身繁殖所需的能量,与此同时,它们将煤层中所含的单质硫迅速氧化为硫酸,提高了矿坑水的酸度。