发布网友 发布时间:2022-04-30 16:11
共4个回答
热心网友 时间:2022-05-14 18:24
齐次线性方程组AX=0有非零解的充要条件是:r(A)<n,即系数矩阵A的秩小于未知量的个数。
由此可得推论:齐次线性方程组AX=0仅有零解的充要条件是r(A)=n。
齐次线性方程组解的存在性
1、若n个方程n个未知量构成的齐次线性方程组AX=0的系数行列式|A|≠0,则方程组有唯一零解。
2、若m个方程n个未知量构成的齐次线性方程组,若r(A)= n,即A的列向量组线性无关,则方程组有唯一零解;若r(A)= s<n,即A的列向量组线性相关,则方程组有有非零解,且有n-s个线性无关解。
扩展资料:
齐次线性方程组解的性质
1、若x是齐次线性方程组AX=0的一个解,则kx也是它的解,其中k是任意常数。
2、若x1,x2是齐次线性方程组AX=0的两个解,则x1+x2也是它的解。
3、对齐次线性方程组AX=0,若r(A)=r<n,则AX=0存在基础解系,且基础解系所含向量的个数为n-r,即其解空间的维数为n-r。
4、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。
参考资料来源:百度百科-齐次线性方程组
热心网友 时间:2022-05-14 19:42
设:未知数的个数为n热心网友 时间:2022-05-14 21:16
齐次线性方程组AX=0有非零解的充要条件是|A|=0.热心网友 时间:2022-05-14 23:08
Ax=0有非零解《=》R(A)<n