发布网友 发布时间:2023-11-11 22:47
共2个回答
热心网友 时间:2024-07-16 23:37
在公元前3世纪,埃及的一个名叫阿斯瓦的小镇上,夏至正午的阳光悬在头顶。物体没有影子,太阳直接照入井中。埃拉托色尼意识到这可以帮助他测量地球的圆周。在几年后的同一天的同一时间,他记录了同一条经线上的城市亚历山大(阿斯瓦的正北方)的水井的物体的影子。发现太阳光线有稍稍偏离,与垂直方向大约成7度角。剩下的就是几何问题了。假设地球是球状,那么它的圆周应是360度。如果两座城市成7度角,就是7/360的圆周,就是当时5000个希腊运动场的距离。因此地球圆周应该是25万个希腊运动场。今天我们知道埃拉托色尼的测量误差仅仅在5%以内。
先定义两个概念
大圆
球面上圆心与球心重合的圆叫 大圆 。因其为球面上最大的圆而得名,与“小圆”相对。
球面上任意两个大圆相互等分。
例如在地球上,赤道与经线圈均为大圆。赤道以外的纬线圈是小圆。
球面上两点的最小距离为经过两点的大圆的劣弧。
结合本题 S指什么呢? S指两地的距离,从一地 一直 向前走 到达另外一地 这条路线的长度就是S 由测量的方法知道,S是过这两地点所有路径中最短的那条
命题1 S是过这两地点所有路径中最短的那条
命题2 球面两点之间的最小距离是所在大圆的劣弧长(几何问题自己证明)
由1,2得 S 是地球大圆上的一段弧
S的长度已知 S对应的圆心角是多少? 是A!
所以2πR*(A/360°)=s 求出2πR的值即可
热心网友 时间:2024-07-16 23:37
哎呀你画图啊,那个夹角其实是圆心角,知道这段弧的长度S和对应的圆周角A,那么就知道了整个圆的周长,360S/A热心网友 时间:2024-07-16 23:37
在公元前3世纪,埃及的一个名叫阿斯瓦的小镇上,夏至正午的阳光悬在头顶。物体没有影子,太阳直接照入井中。埃拉托色尼意识到这可以帮助他测量地球的圆周。在几年后的同一天的同一时间,他记录了同一条经线上的城市亚历山大(阿斯瓦的正北方)的水井的物体的影子。发现太阳光线有稍稍偏离,与垂直方向大约成7度角。剩下的就是几何问题了。假设地球是球状,那么它的圆周应是360度。如果两座城市成7度角,就是7/360的圆周,就是当时5000个希腊运动场的距离。因此地球圆周应该是25万个希腊运动场。今天我们知道埃拉托色尼的测量误差仅仅在5%以内。
先定义两个概念
大圆
球面上圆心与球心重合的圆叫 大圆 。因其为球面上最大的圆而得名,与“小圆”相对。
球面上任意两个大圆相互等分。
例如在地球上,赤道与经线圈均为大圆。赤道以外的纬线圈是小圆。
球面上两点的最小距离为经过两点的大圆的劣弧。
结合本题 S指什么呢? S指两地的距离,从一地 一直 向前走 到达另外一地 这条路线的长度就是S 由测量的方法知道,S是过这两地点所有路径中最短的那条
命题1 S是过这两地点所有路径中最短的那条
命题2 球面两点之间的最小距离是所在大圆的劣弧长(几何问题自己证明)
由1,2得 S 是地球大圆上的一段弧
S的长度已知 S对应的圆心角是多少? 是A!
所以2πR*(A/360°)=s 求出2πR的值即可
热心网友 时间:2024-07-16 23:37
哎呀你画图啊,那个夹角其实是圆心角,知道这段弧的长度S和对应的圆周角A,那么就知道了整个圆的周长,360S/A