为什么实对称矩阵要正交化?
发布网友
发布时间:2023-11-07 03:59
我来回答
共1个回答
热心网友
时间:2024-12-15 02:50
一句话来解释是:正交矩阵有很多好的性质可以为我们所用!!
再来具体说一下:
1. 首先,如果不做正交单位话,我们也可以通过U(把特征向量按照列写成的矩阵),把一个实对称矩阵对角化为以它的特征值为对角元的对角矩阵。
2.其次,对应一个特征值的特征向量乘以任何一个非零的系数,仍然还是对应着这个特征值的特征向量,如果一个特征值对应多个特征向量,那在它们张成的空间里找出同样数量的线性不相关的向量,也都是这个特征值的特征向量,所以说特征向量并不唯一,也就是说这里的U是不唯一的。
而对于一个实对称矩阵,它的属于不同特征值的特征向量天生就是正交的,这使得我们只要在每个特征值内部选取合适的互相正交的特征向量,就能保证所有的特征向量都正交。
特征向量乘以一个系数,仍然还是特征向量。所以,对于实对称矩阵来说,我们完全可以在诸多的U中选出一个特殊的Q,让Q的每一个列向量都互相正交而且长度为1。这样的相当于由一组标准正交基当做列向量组成的矩阵Q,正是一个正交矩阵。
因此,对实对称矩阵对角化的时候,正交单位化不是必须的,只有当我们想在实对称矩阵的诸多U里选取一个正交矩阵Q时,才需要做。