发布网友 发布时间:2023-10-17 05:46
共3个回答
热心网友 时间:2024-12-03 20:14
特征矩阵如上,求其行列式,即特征多项式。
按第1列展开,得到2阶行列式,然后按对角线法则展开,得到:
(λ-1)[(λ+1)λ-1]
=(λ-1)(λ^2+λ-1)
=(λ-1)[(λ^2+λ+1)-2]
=(λ^3-1)-2(λ-1)
=λ^3-2λ+1
对于求解线性递推数列,我们还经常使用生成函数法,而对于常系数线性递推数列,其生成函数是一个有理分式,其分母即特征多项式。
为n*n的矩阵A的特征多项式为|A-λE|,其中E为n*n的单位矩阵。
扩展资料:
特征多项式解法:
1、把|λE-A|的各行(或各列)加起来,若相等,则把相等的部分提出来(一次因式)后,剩下的部分是二次多项式,肯定可以分解因式。
2、把|λE-A|的某一行(或某一列)中不含λ的两个元素之一化为零,往往会出现公因子,提出来,剩下的又是一二次多项式。
3、试根法分解因式。
对布于任何交换环上的方阵都能定义特征多项式。要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:
设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式Ax=λx成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应于特征值λ的特征向量。
参考资料来源:百度百科——特征多项式
热心网友 时间:2024-12-03 20:15
你这个应该是可以应用到更高阶的,无需假定是3阶,可以假定到n阶热心网友 时间:2024-12-03 20:15
特征多项式:n级矩阵A的特征多项式就是λE-A的行列式,即|λE-A|,这里E指n级单位矩阵
特征值:令|λE-A|=0,解出λ的值即为特征值。求解的时候一般通过行列变换,让一行或一列里有只有一个不为0,再按不为0的那个展开,可以避免得到高次多项式,不容易因式分解。
特征向量:将特征值λ的取值代回λE-A,求解使(λE-A)T=0的T(T是n×1的矩阵),就是求解非齐次线性方程组。方法一般是将λ代入后,对矩阵(λE-A)初等行变化,化为简单的阶梯型矩阵,n-(λE-A)的秩就是自由变量的个数,再将自由变量令为线性无关的向量代入即可。n级矩阵有n个特征向量。