问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

spss观测值较少时可以用误差代表交互效应吗

发布网友 发布时间:2022-04-20 14:32

我来回答

1个回答

热心网友 时间:2023-08-02 19:30

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调
用逗Univariate地过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以
分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差
相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可
以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。
[例子]
研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。
表5-7 不同温度与不同湿度粘虫发育历期表

相对湿度(%)
温度℃

重 复

1

2

3

4

100

25

91.2

95.0

93.8

93.0

27

87.6

84.7

81.2

82.4

29

79.2

67.0

75.7

70.6

31

65.2

63.3

63.6

63.3

80

25

93.2

89.3

95.1

95.5

27

85.8

81.6

81.0

84.4

29

79.0

70.8

67.7

78.8

31

70.7

86.5

66.9

64.9

40

25

100.2

103.3

98.3

103.8

27

90.6

91.7

94.5

92.2

29

77.2

85.8

81.7

79.7

31

73.6

73.2

76.4

72.5

数据保存在逗DATA5-2.SAV地文件中,变量格式如图5-1。
下载信息 [文件大小:1.02 KB 下载次数: 次]
点击下载文件:DATA5-2.rar

1)准备分析数据
在数据编辑窗口中输入数据。建立因变量历期逗历期地变量,因素变量温度逗A地,湿度为逗B地变量,重复变量逗重复地。然后输入对应的数值,如图5-6所示。或者打开已存在的数据文件逗DATA5-2.SAV地。

图5-6 数据输入格式
2)启动分析过程
点击主菜单逗Analyze地项,在下拉菜单中点击逗General Linear Model地项,在右拉式菜单中点击逗Univariate地项,系统打开单因变量多因素方差分析设置窗口如图5-7。

图5-7 多因素方差分析窗口
3)设置分析变量
设置因变量: 在左边变量列表中选逗历期地,用向右拉按钮选入到逗Dependent Variable:地框中。
设置因素变量: 在左边变量列表中选逗a地和逗b地变量,用向右拉按钮移到逗Fixed Factor(s):地框中。可以选择多个因素变量。由于内存容量的*,选择的因素水平组合数(单元数)应该尽量少。
设置随机因素变量: 在左边变量列表中选逗重复地变量,用向右拉按钮移到逗到Random Factor(s)地框中。可以选择多个随机变量。
设置协变量:如果需要去除某个变量对因素变量的影响,可将这个变量移到逗Covariate(s)地框中。
设置权重变量:如果需要分析权重变量的影响,将权重变量移到逗WLS Weight地框中。
4)选择分析模型
在主对话框中单击逗Model地按钮,打开逗Univariate Model地对话框。见图5-8。

图5-8 逗Univariate Model地 定义分析模型对话框
在Specify Model栏中,指定分析模型类型。
① Full Factorial选项

项为系统默认的模型类型。该项选择建立全模型。全模型包括所有因素变量的主效应和所有的交互效应。例如有三个因素变量,全模型包括三个因素变量的主效应、
两两的交互效应和三个因素的交互效应。选择该项后无需进行进一步的操作,即可单击逗Continue地按钮返回主对话框。此项是系统缺省项。
② Custom选项

立自定义的分析模型。选择了逗Custom地后,原被屏蔽的逗Factors & Covariates地、逗Model地和逗Build
Term(s)地栏被激活。在逗Factors &
Covariates地框中自动列出可以作为因素变量的变量名,其变量名后面的括号中标有字母逗F地;和可以作为协变量的变量名,其变量名后面的括号中标
有字母逗C地。这些变量都是由用户在主对话框中定义过的。根据表中列出的变量名建立模型,其方法如下:
在逗Build Term(s)地栏右面的有一向下箭头按钮(下拉按钮),单击该按钮可以展开一小菜单,在下拉菜单中用鼠标单击某一项,下拉菜单收回,选中的交互类型占据矩形框。有如下几项选择:
Interaction 选中此项可以指定任意的交互效应;
Main effects 选中此项可以指定主效应;
All 2-way 指定所有2维交互效应;
All 3-way 指定所有3维交互效应;
All 4-way 指定所有4维交互效应
All 5-way 指定所有5维交互效应。
③ 建立分析模型中的主效应:
在逗Build Term(s)地栏用下拉按钮选中主效应逗Main effects地。

变量列表栏用鼠标键单击某一个单个的因素变量名,该变量名背景将改变颜色(一般变为蓝色),单击逗Build
Term(s)地栏中的右拉箭头按钮,该变量出现在逗Model地框中。一个变量名占一行称为主效应项。欲在模型中包括几个主效应项,就进行几次如上的操
作。也可以在标有逗F地变量名中标记多个变量同时送到逗Model地框中。
本例将逗a地和逗b地变量作为主效应,按上面的方法选送到逗Model地框中。
④ 建立模型中的交互项
要求在分析模型中包括哪些变量的交互效应,可以通过如下的操作建立交互项。
例如,因素变量有逗a(F)地和逗b(F)地,建立它们之间的相互效应。
连续在逗Factors &地框的变量表中单击逗a(F)地和逗b(F)地变量使其选中。
单击逗Build Term(s)地栏内下拉按钮,选中交互效应逗Interaction地项。
单击逗Build Term(s)地栏内的右拉按钮,逗a*b地交互效应就出现在逗Model地框中,模型增加了一个交互效应项:a*b
⑤ Sum of squares 栏分解平方和的选择项
Type I项,分层处理平方和。仅对模型主效应之前的每项进行调整。一般适用于:平衡的AN0VA模型,在这个模型中一阶交互
效应前指定主效应,二阶交互效应前指定一阶交互效应,依次类推;多项式回归模型。嵌套模型是指第一效应嵌套在第二
效应里,第二效应嵌套在第三效应里,嵌套的形式可使用语句指定。
Type II项,对其他所有效应进行调整。一般适用于:平衡的AN0VA模型、主因子效应模型、回归模型、嵌套设计。
Type III项,是系统默认的处理方法。对其他任何效应均进行调整。它的优势是把所估计剩余常量也考虑到单元频数中。对没
有缺失单元格的不平衡模型也适用,一般适用于:Type I、Type II所列的模型:没有空单元格的平衡和不平衡模型。
Type IV顶,没有缺失单元的设计使用此方法对任何效应F计算平方和。如果F不包含在其他效应里,Type IV = Type IIIl =
TypeII。如果F包含在其他效应里,Type IV只对F的较高水平效应参数作对比。一般适用于:Type I、Type lI所列模型;
没有空单元的平衡和不平衡模型。
⑥ Include intercept in model栏选项
系统默认选项。通常截距包括在模型中。如果能假设数据通过原点,可以不包括截距,即不选择此项。
5)选择比较方法
在主对话框中单击逗Contrasts地按钮,打开逗Contrasts地比较设置对话框,如图5-9所示。

如图5-9 Contrasts对比设置框
在逗Factors地框中显示出所有在主对话框中选中的因素变量。因素变量名后的括号中是当前的比较方法。
① 选择因子
在逗Factors地框中选择想要改变比较方法的因子,即鼠标单击选中的因子。这一操作使逗Change Contrast地栏中的各项被激活。
② 选择比较方法
单击逗Contrast地参数框中的向下箭头,展开比较方法表。用鼠标单击选中的对照方法。可供选择的对照方法有:
None,不进行均数比较。
Deviation,除被忽略的水平外,比较预测变量或因素变量的每个水平的效应。可以选择逗Last地(最后一个水平)或
逗First地(第一个水平)作为忽略的水平。
Simple,除了作为参考的水平外,对预测变量或因素变量的每一水平都与参考水平进行比较。选择逗Last地或逗First地作为
参考水平。
Difference,对预测变量或因素每一水平的效应,除第一水平以外,都与其前面各水平的平均效应进行比较。与Helmert对照
方法相反。
Helmert,对预测变量或因素的效应,除最后一个以外,都与后续的各水平的平均效应相比较。
Repeated,对相邻的水平进行比较。对预测变量或因素的效应,除第一水平以外,对每一水平都与它前面的水平进行比较。
Polynomial,多项式比较。第一级自由度包括线性效应与预测变量或因素水平的交叉。第二级包括二次效应等。各水平彼此
的间隔被假设是均匀的。
③ 修改比较方法
先按步骤①选中因子变量,再选比较方法,然后单击逗Change地按钮,选中的(或改变的)比较方法显示在步骤①选中的因子变量后面的括号中。
④设置比较的参考类
在逗Reference Category地栏比较的参考类有两个,只有选择了逗Deviation地或逗Simple地方法时才需要选择参考水平。共有两种可能的选择,最后一个水平逗Last地选项和第一水平逗First地项。系统默认的参考水平是逗Last地。
6) 选择均值图
在主对话框中单击逗Plot地按钮,打开逗Profile Plots地对话框,如图5-10所示。在该对话框中设置均值轮廓图。

如图5-10 逗Profile Plots地对话框
均值轮廓图(Profile Plots)用于比较边际均值。轮廓图是线图,图中每个点表明因变量在因素变量每个水平上的边际均值的估计值。如果指定了协变量,该均值则是经过协变量调整的均值。因变量做轮廓图的纵轴;一个因素变量做横轴。
做单因素方差分析时,轮廓图表明该因素各水平的因变量均值。
双因素方差分析时,指定一个因素做横轴变量,另一个因素变量的每个水平产生不同的线。如果是三因素方差分析,可以指定第三个因素变量,该因素每个水平产生一个轮廓图。双因素或多因素轮廓图中的相互平行的线表明在因素间无交互效应;不平行的线表明有交互效应。
Factors 框中为因素变量列表。
Horlzontal Axis 横坐标框,选择选择逗Factors地框中一个因素变量做横坐标变量。被选的变量名反向显示,单击向右拉箭
头按钮,将变量名送入相应的横坐标轴框中。
如果只想看该因素变量各水平的,因变量均值分布,单击逗Add地按钮,将所选因素变量移入下面的逗Plots地框中。否
则,不点击逗Add地按钮,接着做下步。
Separate Lines 分线框。如果想看两个因素变量组合的各单元格中因变量均值分布,或想看两个因变量间是否存在交互效应,
选择逗Factors地框中另一个因素变量,单击右拉按钮将变量名送入逗Separate Lines地框中。单击逗Add地按钮,将自动生成
的图形表达式送入到逗Plots地栏中。分线框中的变量的每个水平将在图中是一条线。图形表达式是用逗*地连接的两个因素变
量名。
Separate Plots 分图框。如果在逗Factors地栏中还有因素变量,可以按上述方法,将其送入逗Separate Plot地框中,单击
逗Add地按钮,将自动生成的图形表达式送入到逗Plots地栏中。图形表达式是用逗*’连接的三个因素变量名。分图变量的每个
水平生成一张线图。
将图形表达式送到逗Plots地框后发现有错误,单击选错的变量,单击逗Remove地按钮,将其取消,再重新输入正确内容。
在检查无误后,按逗Continue地按钮确认,返回到主对话框。如果取消做的设置单击逗Cancel地按钮
7) 选择多重比较

主对话框中单击逗Post Hoc地选项,打开逗Post Hoc Multiple Comparisons for Observed
Means地对话框,从逗Factor(s)地框选择变量,单击向右拉按钮,使被选变量进入逗Post Hoc test for地框。本例子选择了逗a地和逗b地。
然后选择多重比较方法。在对话框中选择多重比较方法。本例子选择了逗Duncan地和逗Tamhane's T2地。

8)选择保存运算值

图5-11 Save对话框
在主对话框中,单击逗Save地按钮,打开逗Save地设置对话框,如图5-11所示。通过在对话框中的选择,可以将所计算的预测值、残差和检测值作为新的变量保存在编辑数据文件中。以便于在其他统计分析中使用这些值。
① Predicted Values 预测值
Unstsndardized,非标准化预测值。
Weighted,如果在主对话框中选择了WLS变量,选中该复选项,将保存加权非标准化预测值。
Standard error,预测值标准误。
② Diagnostics 诊断值
Cook’s distance,Cook 距离。
Leverage values,非中心化 Leverage 值。
③ Resials 残差
Unstsndardized,非标准化残差值,观测值与预测值之差。
Weighted,如果在主对话框中选择了WLS变量,选中该复选项,将保存加权非标准化残差。
Standardized,标准化残差,又称Pearson残差。
Studentized,学生化残差。
Deleted,剔除残差,自变量值与校正预测值之差。
④ Save to New File 保存协方差矩阵
选中地Coefficient statistics地项,将参数协方差矩阵保存到一个新文件中。单击逗File地按钮,打开相应的对话框将文件保存。
9)选择输出项
在主对话框中单击逗Options地按钮,打开逗Options地输出设置对话框,见图5-12。

图5-12 逗Options地输出设置对话框
① Estimated Marginal Means 估测边际均值设置
在逗Factor(s) and Factor Interactions地框中列出逗Model地对话框中指定的效应项,在该框中选定因素变量的各种效应项,
单击右拉按钮就将其复制到逗Display Means for地框中。选择主效应,则产生估计的边际均值表;选择二维交互效应产生的估计
边际均值表实际上是典型的单元格均值表。选择三维交互效应也是单元格均值表。
在逗Display Means for地框中有主效应时激活此框下面的逗Compare main effects地复选项,对主效应的边际均值进行组间的配
对比较。
Confidence interval adjustment参数框,进行多重组间比较。打开下拉菜单,共有三个选项:
LSD(none)、Bonferroni、Sidak.。
② 在逗Display地栏中指定要求输出的统计量
Descriptive statistics项,输出描述统计量:观测量的均值、标准差和每个单元格中的观测量数。
Estimates of effect size项,效应量估计。选择此项,给出η2(eta-Square)值。它反应了每个效应与每个参数估计值可以归于
因素的总变异的大小。
Observed power复选项,选中此项给出在假设是基于观测值时各种检验假设的功效。计算功效的显著性水平,系统默认的临界值
是0.05。
Parameter estimates项。选择此项给出了各因素变量的模型参数估计、标准误、t检验的t值、显著性概率和95%的置信区间。
Contrast coefficient matrix项,显示协方差矩阵。
Homogeneity test项,方差齐次性检验。本例子选中该项。
Spread vs.level plot项,绘制观测量均值对标准差和观测量均值对方差的图形。
Resial plot项,绘制残差图。给出观测值、预测值散点图和观测量数目,观测量数目对标准化残差的散点图,加上正态和标准化
残差的正态概率图。
Lack of fit项,检查独立变量和非独立变量间的关系是否被充分描述。
General estimable function项,可以根据一般估计函数自定义假设检验。对比系数矩阵的行与一般估计函数是线性组合的。
③ Significance level 框设置
改变逗Confidence intervals地框内多重比较的显著性水平。
10) 提交执行
设置完成后,在多因素方差分析窗口框中点击逗OK地按钮,SPSS就会根据设置进行运算,并将结算结果输出到SPSS结果输出窗口中。
11) 结果与分析
主要输出结果:

结果分析:
方差不齐次性检验显著
表5-8 方差齐次性检验表明:方差不齐次性显著,p<0.05。
方差分析:
表5-9 主效应方差分析表:在表的左上方标明研究的对象是粘虫历期。
偏差来源和偏差平方和:
Source 列是偏差的来源。其次列是逗Type III Sum of Squares地偏差平方和。
Corrected Model 校正模型,其偏差平方和等于两个主效应a、b平方和加上交互a*b的平方和之和。
Intercept 截距。
a 温度主效应,其偏差平方和反应的是不同温度造成对粘虫历期的差异。与b偏差平方相同均属于组间偏差平方和。
b 湿度主效应,其偏差平方和反应的是不同湿度计量造成的粘虫历期之差异。
a*b 温度和湿度交互效应,其偏差平方和反应的是不同温度和湿度共同造成的粘虫历期的差异。
Error 误差。其偏差平方和反应的是组内差异。也称组内偏差平方和。
Total 是偏差平方和在数值上等于截距、主效应、次效应和误差偏差平方和之总和。
Corrected Total 校正总和。其偏差平方和等于校正模型与误差之偏差平方和之总和。
df 自由度
Mean Square 均方,数值上等于偏差平方和除以相应的自由度。
F 值,是各效应项与误差项的均方之比值
Sig 进行F检验的p值。p≤0.05,由此得出逗温度地和逗湿度地对因变量逗粘虫历期地在0.05水平上是有显著性差异的。
根据方差分析表明:
不同温度(a)对粘虫历期的偏差均方是1575.434,F值为90.882,显著性水平是0.000,即p<0.05存在显著性差异;
不同湿度(b)对粘虫历期的偏差均方是322.000,F值为18.575,显著性水平是0.000,即p<0.05存在显著性差异;
不同温度和不同湿度(a*b)共同对粘虫历期的偏差均方是19.809,F值为1.143,显著性水平是0.358,即p>0.05存在不显著性
差异。
多重比较
由于方差不齐次性,应选择方差不具有齐次性时的逗Tamhane's T2地t检验进行配对比较。表5-10 多重比较表就是逗温度地各水平逗Tamhane's T2地方法比较的结果。表中的各项说明参见表5-6(5.2.2节)。
温度25℃与27℃、29℃和31℃之间都有显著性差异;
温度27℃与25℃、29℃和31℃之间都有显著性差异;
温度29℃与26℃和27℃之间都有显著性差异;与31℃无显著性差异;
温度31℃与25℃和27℃之间都有显著性差异;与29℃无显著性差异。
不同湿度水平之间无显著性差异存在,这里没有列出多重比较表。
地址:
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
单刀协会是什么意思? 有没有卖好莱坞道具大师刀剑神域武器真的 人都说刀剑有煞气,放在家里不好,请大师帮我看一下,我这把宝剑煞气重吗... 赶尸真的存在吗,我对此真的是非常感兴趣? 孩子冷血无情怎么办 看不惯自己的孩子,总觉得他事事不如我的意,作业不够认真,缺乏灵性,反应... 我的妹妹读不懂数学,语文写作很没灵性,应该怎么培养她的能力 佛山市邮政储蓄银行的劳务派遣工和正式工有何区别? 音响音质好,主要是老主板还是喇叭啊? 2024材料专业真的是坑吗 饥荒中怎么修改数据让切斯特眼骨的数量增加 一加8T为什么从屏幕下方两个角斜45度向内滑,无法呼出语音助手? 判断m是否为素数。如果为素数使变量f的值为一,否... spss回归分析t、F值分别代表什么呀? 已知因变量:总资产收益率,自变量:流动负债率,... 判断m是否为素数.如果m为素数使变量f的值为1,否则... 加工中心宏程序中进给变量的运用 挑选变量子集方法的主要原则有? 我的数据进行两个因素方差分析,p值和f值不出现怎... 用SPSS一个分析,有一个因变量和N个自变量,先做相... 计量经济学中多重共线性的检验方法有哪些 stata如何输出带有显著性的f值 用excel进行两组样本的方差齐性分析,F检验 大数据分析中出现的统计学错误包括什么? SPSS中的具体操作 问下,spss回归分析得出的R方值、F值、t值各有何含... spss回归分析F值很大,有100多,这样合理吗 高中学生综合素质评价怎么填写? 往届生的综合素质评价怎么办 怎么进行微信电脑版发送 单变量方差分析(One-Way ANOVA)得到的表中F值、P值... SAS软件因子分析是怎么回事?包括因变量和自变量以... 如何算出F值 P值,着急,非行 一加手机小布助手没反应怎么办? 大主宰温清漩人物介绍 - 百度 寻找50多年前兰州军区司令温清水 第一自然段中,作者怎样写出济南冬天温清的天气特点? 英雄联盟天堂劫之所以被称为天堂劫是不是因为游戏I... 英雄联盟国服第一分手费是什么梗 抖音集齐怎么别人发 说一说,你最喜欢《刀剑乱舞》里的谁? 抖音集齐之后为什么不能再集了 孝当竭力 忠则尽命 临深履薄 夙兴温清的典故 好的+... 大主宰温清漩第几章要把牧尘介绍给潇潇 抖音前多少名集齐 《王者荣耀》国服第一安琪拉出装是什么? LOL:为什么国服那么多国服第一,不去打职业 抖音如何集齐发? 抖音集齐全部年味卡有什么用 “温清之礼”是什么意思?