发布网友 发布时间:2023-10-24 08:19
共1个回答
热心网友 时间:2024-11-17 09:39
一、工具:Excel、Raw data
二、操作步骤
1.理清各个数据之间的逻辑关系,搞清楚哪个是自变量,哪个又是因变量。如附图所示,这里我们要对人均gdp和城市化水平进行分析,建立符合两者之间的模型,假定人均gdp为自变量,城市化水平是因变量。
2.由于不知道两者之间的具体关系如何,所以利用数据生成一个散点图判断其可能符合的模型。如附图1所示为生成的散点图,一般横坐标为自变量,纵坐标为因变量,所以我们需要将x轴,y轴的坐标对调一下,这里采用最简单的方法,将因变量移动到自变量的右边一列即可,如附图2所示。
3.由步骤2的散点图,可以判断自变量和因变量之间可能呈线性关系,可以添加线性趋势线进一步加以判断。如附图1所示。也可以添加指数,移动平均等趋势线进行判断。很明显数据可能符合线性关系,所以下面对数据进行回归分析。
4.选择菜单栏的“数据分析”-->“回归”。具体操作如附图所示。
5.步骤4进行的回归分析输出结果如附图所示。回归模型是否有效,可以参见p指,如果p<0.001则极端显著,如果0.001<p<0.01非常显著,0.01<p<0.05则一般显著,p>0.05则不显著。本例的p值均小于0.001,所以属于极端显著,故回归模型是有效的。根据回归模型的结果可知
y = 5E-06x + 0.5876R² = 0.9439
如附图2所示。