数学中的领域概念
发布网友
发布时间:2022-04-20 16:05
我来回答
共2个回答
热心网友
时间:2023-07-04 05:32
1、首先,领域是集合的一种概念,也就是说,领域是无限数值的一个集合,集合的性质领域都是满足的,例如:x0∈(x0-δ,x0+δ);
2、其次,领域必定是确定以某个变量为中心的集合,因为领域是从微积分中发展过来的,因此,领域主要的研究对象并不是像集合那样,集合是研究集合中元素及其构成的,而领域研究的是以微积分为方向的微小变量Δx的;领域和集合所属研究对象有不停;
3、再次,对于形如:y=f(x)的一元函数,在x的微小变量Δx下,y的变化趋势如何,即:Δy如何,这是微积分所研究的,但是为了考察Δx,必须要将其置于某个集合中,这个集合随属x的定义域,但是却是以x0为中心的一个微小集合,即:(x0-δ,x0+δ),也可以说,以x0为中心,δ>0为半径的一个微小集合域,这就是领域!
4、对于二元函数和多元函数,领域的概念也是类似!
邻域,是指集合上的一种基础的拓扑结构。有邻域公理(邻域公理是现代数学拓扑结构的基础概念)、开邻域和闭邻域、去心邻域等的研究著作。
中文名
邻域
外文名
neighbourhood
相关应用
邻域公理
相关概念
去心邻域、开邻域、闭邻域
适用范围
数理科学
快速
导航
邻域公理
初等定义
邻域是一个特殊的区间,以点a为中心点任何开区间称为点a的邻域,记作U(a)。
点a的δ邻域:设δ是一个正数,则开区间(a-δ,a+δ)称为点a的δ邻域,记作,点a称为这个邻域的中心,δ称为这个邻域的半径。
由于相当于,因此,表示与点a的距离小于δ的一切点x的全体。
点a的去心δ邻域:有时用到的邻域需要把邻域中心去掉,点a的δ邻域去掉中心a后,称为点a的去心δ邻域,记作(表达方法是在U上标一个小的0),即,这里表示。有时把开区间(a - δ, a)称为a的左δ邻域,把开区间(a, a + δ)称为a的右δ邻域。[1]
热心网友
时间:2023-07-04 05:33
那么,数学家究竟都在研究什么呢?或者说数学是由哪些部分组成的?传统上,我们可以将数学分为两大类:研究数学本身的纯数学和应用于解决现实问题的应用数学。但是这种分类法并不十分清晰,许多领域起初是按照纯数学发展的,但后来却发现了意想不到的应用。许多领域之间也有着非常紧密的关系,因此,如果要精确地为数学分类的话,应该是一个复杂的网络。
而在本文中,我们将会带领读者简单地了解数学的五大部分:数学基础、代数学、分析学、几何学和应用数学。
1.数学基础
数学基础研究的是逻辑或集合论中的问题,它们是数学的语言。逻辑与集合论领域思考的是数学本身的执行框架。在某种程度上,它研究的是证明与数学现实的本质,与哲学接近。
数理逻辑和基础(Mathematical logic and foundations)
数理逻辑是这一部分的核心,但是对逻辑法则的良好理解产生于它们第一次被使用之后。除了在计算机科学、哲学和数学中正式地使用了基础的命题逻辑之外,这一领域还涵盖了普通逻辑和证明论,最终形成了模型论。在此,一些著名的结果包括哥德尔不完全性定理以及与递归论相关的丘奇论题。
2.代数学
代数是对计数、算术、代数运算和对称性的一些关键的概念进行提炼而发展的。通常来说,这些领域仅通过几个公理就可定义它们的研究对象,然后再考虑这些对象的示例、结构和应用。其他非常偏代数的领域包括代数拓扑、信息与通信,以及数值分析。
数论(Number theory)
数论是纯数学中最古老、也是最庞大的分支之一。显然,它关心的是与数字有关的问题,这通常是整数或有理数(分数)。除了涉及到全等性、可除性、素数等基本主题之外,数论现在还包括对环与数域的非常偏代数的研究;还有用于渐近估计和特殊函数的分析方法和几何主题;除此之外,它与密码学、数学逻辑甚至是实验科学之间都存在着重要的联系。
群论(Group theory)
群论研究的是那些定义了可逆结合的“乘积”运算的集合。这包括了其他数学对象的对称集合,使群论在所有其他数学中占有一席之地。有限群也许是最容易被理解的,但矩阵群和几何图形的对称性同样也是群的中心示例。