mean shift怎样选择和函数
发布网友
发布时间:2022-05-01 05:31
我来回答
共1个回答
热心网友
时间:2022-06-25 01:30
1. Meanshift推导
给定d维空间Rd的n个样本点 ,i=1,…,n,在空间中任选一点x,那么Mean Shift向量的基本形式定义为:
Sk是一个半径为h的高维球区域,满足以下关系的y点的集合,
k表示在这n个样本点xi中,有k个点落入Sk区域中.
以上是官方的说法,即书上的定义,我的理解就是,在d维空间中,任选一个点,然后以这个点为圆心,h为半径做一个高维球,因为有d维,d可能大于2,所以是高维球。落在这个球内的所有点和圆心都会产生一个向量,向量是以圆心为起点落在球内的点位终点。然后把这些向量都相加。相加的结果就是Meanshift向量。
如图所以。其中*箭头就是Mh(meanshift向量)。
再以meanshift向量的终点为圆心,再做一个高维的球。如下图所以,重复以上步骤,就可得到一个meanshift向量。如此重复下去,meanshift算法可以收敛到概率密度最大得地方。也就是最稠密的地方。
最终的结果如下:
解释一下K()核函数,h为半径,Ck,d/nhd 为单位密度,要使得上式f得到最大,最容易想到的就是对上式进行求导,的确meanshift就是对上式进行求导.
(2)
令:
K(x)叫做g(x)的影子核,名字听上去听深奥的,也就是求导的负方向,那么上式可以表示
对于上式,如果才用高斯核,那么,第一项就等于fh,k
第二项就相当于一个meanshift向量的式子:
那么(2)就可以表示为
下图分析的构成,如图所以,可以很清晰的表达其构成。