考研数学到底是什么难度,能不能形象的说明一下?
发布网友
发布时间:2022-04-20 13:21
我来回答
共3个回答
热心网友
时间:2022-07-16 17:24
考研数学的难度很大,需要认真复习。
考研数学根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三。
很多人都会认为数一最难,数三次之,数二最简单,确实,数二由于考察范围少,虽然考的会相对精细一些,但相对来说掌握的知识点要少一些,更容易复习。
但是,数一与数三的难度却不好相比,毕竟这两个卷重所注重的考察领域不一样。有些人认为数一比数三难很多,其实不然,注重的领域不同。
考研数学一二三区别
考研数学一线性代数、高等数学和概率论与数理统计都要考,考得比较全面,而且题目相对偏难,其中线性代数占22% ,概率论与数理统计22% ,高等数学所占比例最多为56%。在数一二三中数一考察的范围是最广的,基本上是整本教材都要考。被称为三数中最难的。
考研数学二的考试内容只有线性代数、高等数学,其中线性代数占22% ,高等数学所占比例为78%,数一二三中线性代数的范围大致相同。
而高等数学方面数二则删减了很多,比如向量代数与空间解析几何、三重积分、曲线积分、曲面积分以及无穷级数方面就被删去了,是不考的,所以这方面只是可以不用复习,被称为三数中最简单的。
考研数学三的考试内容所占比例与数一相同,也是线性代数、高等数学和概率论与数理统计都要考,其中线性代数占22% ,概率论与数理统计22% ,高等数学56%。
但是,与数一相比,数三对向量空间与解析几何、三重积分、曲线积分、曲面积分不考察,还有所有与物理相关的应用也不考察,而对于微积分的考察则比较多,相对于数一来说概率统计中也没有假设检验和置信区间。
热心网友
时间:2022-07-16 18:42
考研数学难度:
考研数学分统考的数学一, 数学二, 数学三、数学农。数学一比数学三的难度大些,数学二不考概率论与数理统计。数农和数三类似,但考察深度比较浅,易得分。
考研数学分为数学一、数学二、数学三、数学(农)和招生单位自命题理学数学。
完全适用数学一的专业。
学硕:工学门类下21个一级学科(计算机科学与技术、力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术。
信息与通信工程、控制科学与工程、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程、管理科学与工程)。
专硕:无。
完全适用数学二的专业。
学硕:工学门类下5个一级学科(纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程)。
专硕:无。
完全适用数学三的专业。
学硕:经济学门类下所有一级学科,管理学门类下3个一级学科(管理科学与工程、工商管理、农林经济管理)。
专硕:无。
选用数学一或数学二的专业。
学硕:工学门类下11个一级学科(材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程、科学技术史、软件工程、生物工程、安全科学与工程、*技术)。
专硕:无。
选用数学一、数学二、数学三或招生单位自命题理学数学的专业
学硕:理学门类下4个一级学科(力学、电子科学与技术、环境科学与工程、生物医学工程)。
专硕:无。
选用数学一、数学二、数学三、“工业设计工程”自命题科目或生物化学的专业。
学硕:无。
专硕:工程硕士。其中数学三仅供项目管理、物流工程领域选用,生物化学仅供“生物工程”领域选用。
选用数学三或经济类联考综合能力的专业。
学硕:无。
专硕:金融、应用统计、税务、国际商务、保险、资产评估选用数学(农)、化学(农)或招生单位自命题科目的专业。
学硕:农学门类下所有一级学科。
专硕:无。
招生单位自命题理学数学或其它自命题科目,也可选用统考试题。
学硕:理学门类(力学、电子科学与技术、环境科学与工程、生物医学工程4个一级学科除外)。
专硕:无。
热心网友
时间:2022-07-16 20:17
考研数学如果是mba,mem,mpa,mpacc等管理类研究生的话,考试不难的
数学分为 算术,代数,几何,概率,应用题五大模块所涉及的知识点,概念要全部过一遍。
具体如下:
(一)算术:
1、整数:整数及其运算、整除、公倍数、公约数、奇数与偶数、质数与合数
解析:整数及其运算为计算能力的基础,不作为知识点专门考察;
整除作为知识点只考察性质,已有四五年没有考过;但作为解题技巧可以经常运用;
公倍数与公约数一般以应用题形式考察,三四年考一次;
奇数与偶数只考察奇偶数之间的运算性质,三四年考一次;
质数与合数主要考察20以内的质数枚举及质因数分解,几乎每年一题。
2、分数、小数、百分数
解析:分数、小数和百分数只是作为计算能力而不作为知识点特地考察,每年有一两题涉及。
3、比与比例
解析:比与比例主要考察比例的性质及其在应用题中的运用,每年有一两题涉及。
4、数轴与绝对值
解析:数轴与绝对值只考察绝对值和绝对值函数的性质,基本每年一题。
(二)代数:
1、整式:整式及其运算、整式的因式与因式分解
解析:整式及其运算主要考察乘法公式和除法运算,即其整除性,约每两年考一次;
整式的因式与因式分解是解方程、不等式的基础能力,不作为知识点特地考察。
2、分式及其运算
解析:分式及其运算是解分式方程、不等式的基础能力,一般在应用题中涉及。
3、函数:集合、一元二次函数及其图像、指数函数、对数函数
解析:集合是基础概念,主要考察对集合表示的含义理解,约每两年考一次;
一元二次函数及其图像是函数部分的考察重点,主要考察其图像的性质,如最值、增减性等,每年考两三题;
指数函数、对数函数主要考察其增减性及指对数的运算规则,约两三年一题。
4、代数方程:一元一次方程、一元二次方程、二元一次方程组
解析:一元一次方程是解方程的基础,不作为特定知识点考察;
一元二次方程是代数方程部分的考察重点,主要考察其根的性质,如根的判别式Δ、韦达定理等,每年考一两题;
二元一次方程组主要在二元应用题中涉及,考察解方程的能力,每年考一两题。
5、不等式:不等式性质、均值不等式、不等式求解(一元一次不等式组、一元二次不等式、简单的绝对值不等式、简单的分式不等式)
解析:不等式性质是解不等式的基础,极少作为特定知识点考察;
均值不等式的考察形式众多,但只有两类,求最值或最值条件,基本每年一题;
不等式求解极少作为主要知识点考察,一般都隐藏在计算过程中,每年有两三题涉及。
6、数列、等差数列、等比数列
解析:数列主要考察通项式与列举法、通项与前n项的和之间的转换关系,基本每年一题;
等差数列、等比数列主要考察脚标性质及前n项的和,每年一两题。
(三)几何:
1、平面图形:三角形、四边形(平行四边形、矩形、梯形)、圆与扇形
解析:三角形是平面图形的考察重点,主要考察面积计算、边长计算和相似全等,每年至少一题;
四边形较少单独考察,一般都与圆或扇形组成复杂图形,考察面积计算,约两年一题;
圆与扇形的考察重点在于圆周长、弧长、面积、半径等之间的计算,约两年一题。
2、空间几何体:长方体、柱体、球体
解析:空间几何体主要考察长方体、柱体、球体的棱长、半径、面积、体积等的计算,每年一两题。
3、平面解析几何:平面直角坐标系、直线方程与圆的方程、两点间距离公式及点到直线的距离公式
解析:平面直角坐标系是平面解析几何的基础,主要考察四个象限中点坐标的性质,约两三年一题;
直线方程与圆的方程考察的是解析式与图像之间的对应关系、直线与直线之间的位置关系,关键在于作图能力,几乎每年均有试题涉及;
两点间距离公式及点到直线的距离公式考察的是直线与圆、圆与圆之间的位置关系,几乎每年均有试题涉及。
(四)数据分析:
1、计数原理:加法原理、乘法原理、排列与排列数、组合与组合数。
解析:加法原理和乘法原理是计数原理的基础,每题都会考察;
排列与排列数、组合与组合数所考察的主要是排列数、组合数的计算以及与加法原理、乘法原理相配合后计数,每年有三四题涉及。
2、数据描述:平均值、方差与标准差、数据的图表表示(直方图、饼图、数表)
解析:平均值主要是算术平均值的计算,极少作为单独考点;
方差与标准差所考察的是两者的计算方法,极少考察;
数据的图表表示主要考察对数表的分析,约两三年考一次。
3、概率:事件及其简单运算、加法公式、乘法公式、古典概型、独立事件概型。
解析:事件及其简单运算是概率基础,不作为单独考点;
加法公式和乘法公式与加法原理、乘法原理本质相同,作为概率计算的基础,几乎每题都会考察;
古典概型主要考察对分子分母的判定及计算,每年一两题;
独立事件概型主要考察定性定量的分析,每年一两题。