发布网友 发布时间:2022-04-30 20:11
共1个回答
热心网友 时间:2022-06-30 20:32
一种核在分子中由于所处的化学结构环境不同,它们的磁共振频率也不同,因而它们共振的谱线出现在谱图的不同化学位移上,这是利用核磁共振谱研究不同有机物质化学结构特征的基本原理。据已有研究成果,煤的13NMR谱中化学位移的结构归属见表7-4,其中0~75×10-6为脂族碳结构,且脂碳中的甲基(14×10-6~22×10-6)、亚甲基(22×10-6~36×10-6)、次甲基、季碳(36×10-6~50×10-6)、氧接脂碳(50×10-6~75×10-6)的化学位移依次增大;900×10-6~100×10-6空缺,是脂碳和芳碳的分界;100×10-6~164×10-6为芳碳区,其中带质子的芳碳位于最右侧,被氧原子取代的芳碳位于最左侧,其峰位分别为:氢接芳碳100×10-6~129×10-6,桥接芳碳129×10-6~137×10-6,侧支芳碳137×10-6~148×10-6,氧接芳碳148×10-6~164×10-6。
表7-4 煤的第二节 固体13C核磁共振研究 NMR谱中化学位移归属
实验采用射频场强64kHz,转子工作转速4kHz,接触时间为1.5ms,重复延迟3s,数据采集1000点,补零至10000点,累加次数4000~9000次。为了获得更理想的谱图,采用了交叉极化(Cross Polarization,简称CP),魔角旋转(Magic Angle Spinning,简称MAS),旋转边带全抑制(Total Sidelined Suppression,简称TOSS)技术,对部分基质镜质体还采用了偶极相移(Dipolar Diffusing,简称DD)技术。
一、角质体核磁共振谱特征
实验样品采自华北轩岗太原组角质煤,其Ro为0.74%,其中角质体含量可达70%以上,经分离破碎后得纯度为85%以上的角质体。其核磁共振谱见图7-5。由谱图可以看出,脂碳部分富含亚甲基结构(30×10-6),亚甲基(30×10-6)的信号很强,而芳甲基(20×10-6)和脂甲基(16×10-6)的信号虽有显示,但相对亚甲基却较弱,而且呈肩峰出现。这说明角质体在生烃过程中以成油为主。氧接脂碳(60×10-6~80×10-6)仍有显示,但较弱。芳碳中以氢接芳碳(128×10-6)信号最强,氧接芳碳(155×10-6)呈弱的肩峰出现。和云南华坪中泥盆世煤中角质体(Ro为0.65%)的核磁共振谱(秦匡宗,1995)相比,二者虽然极其相似,但太原组煤中角质体的亚甲基(30×10-6)信号没有华坪角质体的强。芳碳结构中,华北太原组煤中角质体以氢接芳碳为主,而华坪(D2)角质体以桥接芳碳为主,这些差异与二者成熟度及成煤植物的不同有关。
图7-5 山西轩岗太原组角质体的NMR谱图
二、基质镜质体核磁共振波谱特征
分别选择孔古4井太原组和山西组、徐14井太原组煤中基质镜质体作为研究对象。其核磁共振谱图见图7-6。由图可以看出,总的谱图特征是相似的。孔古4井太原组煤中基质镜质体的13C核磁共振谱由于累加次数较少(4000次),信噪比较低,谱图明显没有山西组(累加次数9382次)和徐14井太原组(累加次数7851次)效果好。以徐14井太原组煤的基质镜质体核磁共振谱看,其脂碳部分以脂甲基碳(16×10-6)为主,但亚甲基碳(30×10-6)的信号也比较明显,出现明显的峰型,多糖类脂族含氧基团(74×10-6)仍然存在,孔古4井太原组煤的基质镜质体核磁共振谱虽然信号相对弱一些,干扰也多一些,但峰型和峰位是一致的。在芳碳部分以氢接芳碳(128×10-6),桥接芳碳(132×10-6)为主,氧接芳碳(154×10-6)也有一定含量。孔古4井山西组煤中基质镜质体的13C核磁共振谱图和太原组基本相似,所变化的是脂族含氧基团(72×10-6)信号较弱,亚甲基(30×10-6)信号也相对弱一些,这一结果和红外吸收光谱研究的结果是一致的。
为了研究基质镜质体富氢程度,对孔古4井太原组和徐14井太原组煤的基质镜质体分别做了偶极相移技术处理。据研究(秦匡宗,1995),对于样品中的芳碳来说,选择合适的偶极相移时间,可以使带质子芳碳(100×10-6~129×10-6)在偶极相移谱中基本消失,而不带质子的芳碳(126×10-6~164×10-6)则得到保留。对脂碳来说,不带质子的季碳(40×10-6)将被保留,带质子的次甲基(39×10-6)和亚甲基(30×10-6)将消失,甲基碳(20×10-6)将加强;而那些具长链的亚甲基或次甲基基团也会得到保留。因此,可以据此反映其富氢程度。对一些不富氢的镜质体来说,在偶极相移谱中,脂碳部分通常只有甲基信号而缺失亚甲基信号。从徐14井和孔古4井太原组煤的基质镜质体偶极相移谱可以看出;在芳碳部分,由于样品中带质子的芳碳(100×10-6~124×10-6)本来就不发育,所以偶极相移谱中变化不大,在脂碳部分,脂甲基碳(16×10-6)消失,甲基碳(20×10-6)信号加强,亚甲基碳(30×10-6)和次甲基碳(39×10-6)信号(尤其是次甲基碳)仍然明显保留下来,这充分说明这种基质镜质体中有柔性长链烷基结构存在,因此,它具有一定的生油潜力。
图7-6 基质镜质体NMR谱图
三、显微组分生烃潜力的核磁共振评价
秦匡宗等(1990)根据煤和干酪根的13CNMR分析,将有机碳区分为“惰性碳”(Ca,90×10-6~165×10-6),“油潜力碳”(Co,25×10-6~45×10-6)与“气潜力碳”(Cg,0~25×10-6,45×10-6~90×10-6,165×10-6~220×10-6)三种类型,其中油潜力碳是指脂碳结构中的亚甲基、次甲基和季碳。气潜力碳为脂甲基、芳甲基、氧接脂碳及羰基、羧基碳。某种结构碳相对值的获得是通过单一结构碳峰面积积分与总的峰面积积分比值求得的。把各种结构碳的相对含量值作为加权系数并与显微组分组成相乘就可以得出该样品中各种显微组分的生油贡献。按照这个思路,对研究的几个样品分别求得三种类型碳的相对值(表7-5)。孔古4井基质镜质体的三种类型结构碳的组成非常相似,而且油潜力碳(Co)达到0.065,比秦匡宗(1995)研究山东黄县第三纪褐煤得出的0.04值还高一些,和吐哈盆地早中侏罗世煤中富氢镜质体相比(Co可达0.13±,赵长毅,1997)要低一些。对角质体的分析结果显示,其油潜力碳(Co)为0.26,和吐哈盆地煤中角质体的结果相似(Co为0.28),但比华坪泥盆纪煤中角质体(Co可达0.38±)要低得多。
表7-5 研究样品13C NMR的组成
根据现有的研究成果,并结合本区石炭—二叠纪煤以基质镜质体为主,壳质组中以孢子体、角质体、树脂体为主的特点,对各种显微组分选取以下油潜力碳指标:镜质组的Co取0.065,壳质组的Co取角质体(Co为0.26)、孢子体(Co为0.17)和树脂体(Co为0.33~0.38)的平均值,为0.285,惰质组的Co取0.02(据秦匡宗,1995),由于研究区煤中藻类体在显微组分中含量极少,不单独考虑。根据上述参数,估算孔古4、苏8等钻井煤的主要成烃组分的贡献列于表7-6。由于上述系数是从低中成熟度(Ro≤0.8%)样品数据基础上提出的,因此,对成熟度较高的大参1井不能适用。可以看出,苏8井生油潜力最大,且稳定组分是主要生油的贡献者;孔古4井次之,且镜质组和稳定组分生油贡献基本相似;义古40井生油潜力最小,以镜质组为主。由此可以看出,尽管镜质组(以基质镜质体为主)的油潜力碳(Co)相对不多,但由于镜质组含量多,它对生油的贡献意义是很大的。
表7-6 渤海湾盆地石炭—二叠纪煤中主要显微组分生油贡献统计表
续表