请给我一些关于对数函数的公式.
发布网友
发布时间:2022-05-01 20:10
我来回答
共2个回答
热心网友
时间:2022-06-22 12:27
由于指数函数y=ax在定义域(-∞,+∞)上是单调函数,所以它存在反函数
我们把指数函数y=ax(a>0,a≠1)的反函数称为对数函数,并记为y=logax(a>0,a≠1).
因为指数函数y=ax的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=logax的定义域为(0,+∞),值域为(-∞,+∞).
2.对数函数的图像与性质
对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x.据此即可以画出对数函数的图像,并推知它的性质.
为了研究对数函数y=logax(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数y=log2x,y=log10x,y=log10x,y=log x,y=log x的草图
由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=logax(a>0,a≠1)的图像的特征和性质.见下表.
图
象
a>1
a<1
性
质
(1)定义域为x>0
(2)当x=1时,y=0
(3)当x>1时,y>0
0<x<1时,y<0
(3)当x>1时,y<0
0<x<1时,y>0
(4)在(0,+∞)上是增函数
(4)在(0,+∞)上是减函数
补充
性质
设y1=logax y2=logbx其中a>1,b>1(或0<a<1 0<b<1=
当x>1时“底大图低”即若a>b>1则y1>y2
当0<x<1时“底大图高”即若1>a>b>0,则y1>y2
利用函数的单调性可进行对数大小的比较.比较对数大小的常用方法有:
(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.
(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.
(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.
(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.
3.指数函数与对数函数对比
为了揭示对数函数与指数函数之间的内在联系,下面列出这两种函数的对照表.
指数函数与对数函数对照表
名称
指数函数
对数函数
一般形式
y=ax(a>0,a≠1)
y=logax(a>0,a≠1)
定义域
(-∞,+∞)
(0,+∞)
值域
(0,+∞)
(-∞,+∞)
函
数
值
变
化
情
况
当a>1时,
当0<a<1时,
当a>1时
当0<a<1时,
单调性
当a>1时,ax是增函数;
当0<a<1时,ax是减函数.
当a>1时,logax是增函数;
当0<a<1时,logax是减函数.
图像
y=ax的图像与y=logax的图像关于直线y=x对称.
热心网友
时间:2022-06-22 12:27
1.函数y=f(x)是定义域为[-6,6]的奇函数。又知y=f(x)在[0,3]上是一次函数,在[3,6]上是二次函数,且当x属于[3,6]时,f(x)小于等于f(5)=3,f(6)=2,试求y=f(x)的解析式。
答:函数y=f(x)是定义域为[-6,6]的奇函数。又知y=f(x)在[0,3]上是一次函数,在[3,6]上是二次函数,且当x属于[3,6]时,f(x)小于等于f(5)=3,f(6)=2,
可设
f(x)=a(x-5)^2+3
a<0
f(6)=2
则
a+3=2解得
a=-1
故
f(x)=-(x-5)^2+3=-x^2+10x-22
3<=x<=6
f(3)=-1
f(0)=0
则
0<=x<=3
f(x)=-x/3
函数y=f(x)是定义域为[-6,6]的奇函数
故
-3-6<=x<=-3
f(x)=x^2+10x+22
综合
-6<=x<=-3
f(x)=x^2+10x+22
-3
0<=x<=3
f(x)=-x/3
3<=x<=6
f(x)=-x^2+10x-22
试求y=f(x)的解析式。
2.已知函数f(x)=(x-a)/(x-2),若a属于r,且方程f(x)=-x恰有一根落在区间(-2,-1)内,求a的取值范围.
答:f(x)=-x
(x-a)/(x-2)=-x
x^2-x-a=0
令g(x)=x^2-x-a
1°g(x)与x轴有一个交点
△=1+4a=0=>a=-1/4
x=1/2不属于(-2,-1)
a不等于-1/4
2°g(x)与x轴有两个交点
△>0且g(-1)*g(-2)<0=>a属于(2,6)
所以a属于(2,6)
3.对于函数f(x),若存在x0属于r,使f(x0)=x0成立,则称点(x0,x0)为函数的不动点,若对于任意实数b,函数f(x)=ax*x+bx-b总有两个相异的不动点,求实数a的取值范围.
答:ax^2+bx-b=x
ax^2+(b-1)x-b=0
△=(b-1)^2+4ab=b^2+(4a-2)b+1>0
(4a-2)^2-4
(1/2)x+m恒成立,求实数m的取值范围.(不等式应为二分之一的x次方,不会打)
答:f(x)=-f(-x)
log1/2[(1-ax)/(x-1)]=-log1/2[(1+ax)/(-x-1)]
a=±1
因为真数大于零
所以,a=-1