向量参数方程式有什么用啊?
发布网友
发布时间:2023-11-24 12:30
我来回答
共1个回答
热心网友
时间:2024-12-02 04:32
已知a,b是直线l上任意两点,o是l外一点,则对直线l上任意一点p,存在实数t,使关于基底{,}的分解式为=(1-t)+t
此向量等式叫做直线l的向量参数方程式,其中实数t叫做参数,并且满足=t.
应用一:,前面的系数之和为定值
1.(2007·全国ⅱ)在△abc中,已知d是ab边上一点,若=2,=+λ,则λ( )
a. b. c.- d.
+λ=1, λ= 选择a
2.(2007·江西)如图,在△abc中,点o是bc的中点,过点o的直线分别交直线ab,ac于不同的两点m,n若=m,=n,则m+n的值为.
解法一:=+=m=n
∴m+n=1即m+n=2
解法二:特殊值法:当m与b重合,n与c重合,此时m=1,n=1,则m+n=2
应用二:用于向量的线性表示以及求向量的数量比
如图,在△abc中,=a,=b, m,n分别是边,上的点,且=a, =b,设与交于p, 用向量a,b表示, 并求ap : pn及bp : pm.
解:在△can中,设=λ,则=(1-λ)+λ=(1-λ)a+λb
在cmb中,设=μ,则=(1-μ)+μ=(1-μ)b+μa
∵a与b不共线 ∴(1-λ)=μλ=1-μλ=μ=
∴=a+b
=则ap:pn=4:1=则bp:pm=3:2
应用三:证明共线问题
对于平行四边形abcd,点m是ab的中点,点n在bd上,且bn=bd.
求证:m,n,c三点共线.
证明:在△cbd中,= ∴ =+=(+)
又在△cmb中,=+=+ =
∴与共线并有公共点c
∴m,n,c三点共线。