如图,AB是⊙O的直径,P在AB的延长线上,PD与⊙O相切于D,C在⊙O上,PC=PD.
发布网友
发布时间:2022-05-01 17:04
我来回答
共1个回答
热心网友
时间:2023-10-23 03:56
(1)证明:连接OC,OD;
∵PD与⊙O相切于D,
∴∠PDO=90°.
∵C在⊙O上,PC=PD,OP=OP,OC=OD,
∴△OCP≌△ODP,
∴∠OCP=90°.
∴PC是⊙O的切线.
(2)解:∵AC=PC,
∴∠CAO=∠CPA;
∵∠CAO=∠OCA,
∵△ACP中,∠CPA=30°,OC=0.5(1+OB);
∵OC=OB,
∴OC=1,
∴⊙O的半径为1
热心网友
时间:2023-11-14 04:54
(1)证明:连接OC,OD;
∵PD与⊙O相切于D,
∴∠PDO=90°.
∵C在⊙O上,PC=PD,OP=OP,OC=OD,
∴△OCP≌△ODP,
∴∠OCP=90°.
∴PC是⊙O的切线.
(2)解:∵AC=PC,
∴∠CAO=∠CPA;
∵∠CAO=∠OCA,
∵△ACP中,∠CPA=30°,OC=0.5(1+OB);
∵OC=OB,
∴OC=1,
∴⊙O的半径为1
热心网友
时间:2023-10-23 03:56
(1)证明:连接OC,OD;
∵PD与⊙O相切于D,
∴∠PDO=90°.
∵C在⊙O上,PC=PD,OP=OP,OC=OD,
∴△OCP≌△ODP,
∴∠OCP=90°.
∴PC是⊙O的切线.
(2)解:∵AC=PC,
∴∠CAO=∠CPA;
∵∠CAO=∠OCA,
∵△ACP中,∠CPA=30°,OC=0.5(1+OB);
∵OC=OB,
∴OC=1,
∴⊙O的半径为1