发布网友 发布时间:2022-05-01 19:10
共5个回答
热心网友 时间:2022-06-21 17:07
心形线的数学表达式。
以a=3为例:
1.心形线,是一个圆上的固定一点在它绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名。
2.心脏线亦为蚶线的一种。在曼德博集合正中间的图形便是一个心脏线。心脏线的英文名称“Cardioid”是 de Castillon 在1741年的《Philosophical Transactions of the Royal Society》发表的;意为“像心脏的”。
扩展资料
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
设f是一个从实数集的子集射到 的函数:。f在中的某个点c处是连续的当且仅当以下的两个条件满足:
f在点c上有定义。c是中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。
不用极限的概念,也可以用下面所谓的 方法来定义实值函数的连续性。
仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:
对于任意的正实数,存在一个正实数δ> 0 使得对于任意定义域中的,只要x满足c - δ< x < c + δ,就有成立。
热心网友 时间:2022-06-21 17:08
r=a(1-sinθ)的含义如图:
极坐标系下是一个心形(图中 a=2)
弧线圆润地描绘着恋人之心的形态,最终又回归起始之点。极简的公式,完整的循环,永恒的爱之絮语,也就是后来说的笛卡尔坐标系。
笛卡尔坐标系就是直角坐标系和斜坐标系的统称。
相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
参考资料:百度百科-笛卡尔坐标系
热心网友 时间:2022-06-21 17:08
付费内容限时免费查看回答r=a(1-sinθ)解析过程:
r=a(1-sinθ)这个函数有两个变量,可对a赋值,然后进行求解。
分别是a=1、a=2、a=3。
相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
热心网友 时间:2022-06-21 17:09
Christine是十七世纪时瑞典的一位公主,她美丽善良,而且很聪明,尤其很喜欢数学。有一天她换上了便服去王宫外面,路上看到很多乞丐,其中有一个 很特别,他不主动请求过路人施舍,而是安静地蹲在地上专心研究数学问题。那个人并不知道站在他眼前的小姐就是公主,只是很惊讶于这位年轻小姐言谈之间显露 出来的数学才华,便很高兴地和Christine交谈起来。Christine公主这才知道,他原本是一个数学家,可惜因为某些原因在法国做数学不得志, 穷困落破,最后流浪到瑞典来的。于是Christine公主把这个数学家请到王宫里做她的数学老师,两个人一起讨论数学问题,一起谈天说地,很幸福,很快乐。热心网友 时间:2022-06-21 17:09
是一颗心的形状。弧线圆润地描绘着恋人之心的形态,最终又回归起始之点。极简的公式,完整的循环,永恒的爱之絮语。