发布网友 发布时间:2023-11-03 02:53
共3个回答
热心网友 时间:2024-12-13 07:26
计算过程如下:
csc²x=1/sin²x
=(sin²x+cos²x)/sin²x
=1+cos²x/sin²x
所以
csc²x=1+cot²x
注意,开方时取正负,就行了。
和角公式:
sin ( α ± β ) = sinα · cosβ ± cosα · sinβ
sin ( α + β + γ ) = sinα · cosβ · cosγ + cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγ
cos ( α ± β ) = cosα cosβ ∓ sinβ sinα
tan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )
三倍角公式:
sin(3α) = 3sinα-4sin3α = 4sinα·sin(60°+α)sin(60°-α)
cos(3α) = 4cos3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan3α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot3α-3cotα)/(3cot2α-1)
三角和:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
复数三角函数:
sin(a+bi)=sinacosbi+sinbicosa=sinachb+ishbcosa
cos(a-bi)=cosacosbi+sinbisina=cosachb+ishbsina
tan(a+bi)=sin(a+bi)/cos(a+bi)
cot(a+bi)=cos(a+bi)/sin(a+bi)
sec(a+bi)=1/cos(a+bi)
csc(a+bi)=1/sin(a+bi)
热心网友 时间:2024-12-13 07:27
解:热心网友 时间:2024-12-13 07:27
这个自己都可以推导的。