问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

什么是广义线性模型以及什么时候使用它们?

发布网友 发布时间:2024-04-29 07:17

我来回答

1个回答

热心网友 时间:2024-05-16 10:16

原文链接:http://tecdat.cn/?p=20882 

 

1导言

这篇文章探讨了为什么使用广义相加模型 是一个不错的选择。为此,我们首先需要看一下线性回归,看看为什么在某些情况下它可能不是最佳选择。


2回归模型

假设我们有一些带有两个属性Y和X的数据。如果它们是线性相关的,则它们可能看起来像这样:

a<-ggplot(my_data, aes(x=X,y=Y))+geom_point()+

 

为了检查这种关系,我们可以使用回归模型。线性回归是一种使用X来预测变量Y的方法。将其应用于我们的数据将预测成红线的一组值:

a+geom_smooth(col="red", method="lm")+

 

这就是“直线方程式”。根据此等式,我们可以从直线在y轴上开始的位置(“截距”或α)开始描述,并且每个单位的x都增加了多少y(“斜率”),我们将它称为x的系数,或称为β)。还有一点自然的波动,如果没有的话,所有的点都将是完美的。我们将此称为“残差”(ϵ)。数学上是:

或者,如果我们用实际数字代替,则会得到以下结果:

 

 

这篇文章通过考虑每个数据点和线之间的差异(“残差)然后最小化这种差异来估算模型。我们在线的上方和下方都有正误差和负误差,因此,通过对它们进行平方并最小化“平方和”,使它们对于估计都为正。这称为“普通最小二乘法”或OLS。


3非线性关系如何?

因此,如果我们的数据看起来像这样,我们该怎么办:

 

我们刚刚看到的模型的关键假设之一是y和x线性相关。如果我们的y不是正态分布的,则使用广义线性模型 (Nelder&Wedderburn,1972),其中y通过链接函数进行变换,但再次假设f(y)和x线性相关。如果不是这种情况,并且关系在x的范围内变化,则可能不是最合适的。我们在这里有一些选择:

热心网友 时间:2024-05-16 10:16

原文链接:http://tecdat.cn/?p=20882 

 

1导言

这篇文章探讨了为什么使用广义相加模型 是一个不错的选择。为此,我们首先需要看一下线性回归,看看为什么在某些情况下它可能不是最佳选择。


2回归模型

假设我们有一些带有两个属性Y和X的数据。如果它们是线性相关的,则它们可能看起来像这样:

a<-ggplot(my_data, aes(x=X,y=Y))+geom_point()+

 

为了检查这种关系,我们可以使用回归模型。线性回归是一种使用X来预测变量Y的方法。将其应用于我们的数据将预测成红线的一组值:

a+geom_smooth(col="red", method="lm")+

 

这就是“直线方程式”。根据此等式,我们可以从直线在y轴上开始的位置(“截距”或α)开始描述,并且每个单位的x都增加了多少y(“斜率”),我们将它称为x的系数,或称为β)。还有一点自然的波动,如果没有的话,所有的点都将是完美的。我们将此称为“残差”(ϵ)。数学上是:

或者,如果我们用实际数字代替,则会得到以下结果:

 

 

这篇文章通过考虑每个数据点和线之间的差异(“残差)然后最小化这种差异来估算模型。我们在线的上方和下方都有正误差和负误差,因此,通过对它们进行平方并最小化“平方和”,使它们对于估计都为正。这称为“普通最小二乘法”或OLS。


3非线性关系如何?

因此,如果我们的数据看起来像这样,我们该怎么办:

 

我们刚刚看到的模型的关键假设之一是y和x线性相关。如果我们的y不是正态分布的,则使用广义线性模型 (Nelder&Wedderburn,1972),其中y通过链接函数进行变换,但再次假设f(y)和x线性相关。如果不是这种情况,并且关系在x的范围内变化,则可能不是最合适的。我们在这里有一些选择:

热心网友 时间:2024-05-16 10:16

原文链接:http://tecdat.cn/?p=20882 

 

1导言

这篇文章探讨了为什么使用广义相加模型 是一个不错的选择。为此,我们首先需要看一下线性回归,看看为什么在某些情况下它可能不是最佳选择。


2回归模型

假设我们有一些带有两个属性Y和X的数据。如果它们是线性相关的,则它们可能看起来像这样:

a<-ggplot(my_data, aes(x=X,y=Y))+geom_point()+

 

为了检查这种关系,我们可以使用回归模型。线性回归是一种使用X来预测变量Y的方法。将其应用于我们的数据将预测成红线的一组值:

a+geom_smooth(col="red", method="lm")+

 

这就是“直线方程式”。根据此等式,我们可以从直线在y轴上开始的位置(“截距”或α)开始描述,并且每个单位的x都增加了多少y(“斜率”),我们将它称为x的系数,或称为β)。还有一点自然的波动,如果没有的话,所有的点都将是完美的。我们将此称为“残差”(ϵ)。数学上是:

或者,如果我们用实际数字代替,则会得到以下结果:

 

 

这篇文章通过考虑每个数据点和线之间的差异(“残差)然后最小化这种差异来估算模型。我们在线的上方和下方都有正误差和负误差,因此,通过对它们进行平方并最小化“平方和”,使它们对于估计都为正。这称为“普通最小二乘法”或OLS。


3非线性关系如何?

因此,如果我们的数据看起来像这样,我们该怎么办:

 

我们刚刚看到的模型的关键假设之一是y和x线性相关。如果我们的y不是正态分布的,则使用广义线性模型 (Nelder&Wedderburn,1972),其中y通过链接函数进行变换,但再次假设f(y)和x线性相关。如果不是这种情况,并且关系在x的范围内变化,则可能不是最合适的。我们在这里有一些选择:

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
华硕笔记本电脑触摸板怎么开笔记本电脑触摸板怎么开启和关闭_百度知 ... 陕西职务侵占案立案准则 结婚后我的恋情维系了十年,怎么做到的? 玉米仁子饭产自哪里 中国期货交易所的交易品种有哪些? 历史要怎么读,有啥诀窍 高中历史诀窍 年终会活动策划方案 深度解析:第一财经回放,探索财经新风向 逆水寒手游庄园怎么邀请好友同住 血色苍穹米岚嫁给了谁 怎么将Excel中的一列数据粘贴成一行数据 钢管租赁计算软件用什么? 氯化钠的提纯应注意哪些问题 长沙劳动广场至湖南群众艺术馆坐哪路公交 R4S进不去 iPhoner4s5.1.1越狱后咋样恢复官方5.1.1的原始固件 属狗70女人和属虎62男人能在一起吗 62虎男与70狗女适合结婚吗? 加装一键启动和远程启动之后,为啥用遥控器打不开后备箱了呢?!_百度知 ... 12.用一架天平和一只空瓶测算一金项链的密度。先测得空品质量为 0.1kg... 小明有条12g的金项链,小明把它放入有10mL水的量筒后发现水面升到11mL... 口流水用济宁话怎么说 打雷会造成跳闸停电吗 我脾气好用上海话怎么说 微信怎么一次删除多个好友 “根据市场需求,及时开发新产品”用英语怎么说 吃伲福达,卡托普利血压170-100降不下来怎么办 贴在家里的对联是什么 Excel中如何计算两个日期之间的时间差? 马鞍山小升初考试时间 马鞍山小学六年级期末考试时间 患有宫颈纳囊影响生育吗 剑与远征七大神器怎么选择?神器属性与选择搭配攻略[视频] 剑与远征磐石之扉谁带最合适 基本视图有个,它们的名称分别是 喷雾干燥哪个牌子好 定妆喷雾使用步骤 定妆喷雾怎么使用顺序 但在派对怎么看见对方对方加你好友 谁是最可爱的人还在语文课本里吗? 作者在写这些最可爱的人的时候为什么先写了他们那么多的缺点有什么作用... 《我最好的朋友》最后的结尾怎么写? 给予患儿破伤风抗毒紊注射治疗,皮试(+)。对于其破伤风抗毒素注射的... 高情商的感谢短句 鱼鲞是什么东西? 健康人体肠道还有什么作用? 春风浩荡展鸿图是左联还是右联 头晕、没劲、后脑勺疼、中医把脉说是涩脉 急 求方法 顾客早上买的蛋卷 傍晚吃完剩俩小块回来说发霉的 店员不懂... 四大洋按从大到小的顺序排列。