发布网友 发布时间:2024-04-29 22:28
共1个回答
热心网友 时间:2024-10-11 16:25
若两函数定义域相同,对应法则也相同,则称这两个函数相等。由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心。
扩展资料:
判断两个函数是否相同
其实就是看两个方面:
1、看定义域是否相同,如果定义域不同,就算函数式形式相同,也不是相同的函数。
例如函数f(x)=x和g(x)=x²/x,尽管当x≠0时,两个函数相等,但是f(x)的定义域是全体实数,g(x)的定义域是x≠0,定义域不一样,所以不是相同的函数。
2、定义域相同的情况下,看相同的x计算出来的函数值是否一样,如果有相同的x算出来的函数值不一样,那么就不是相同的函数。
例如f(x)=x和g(x)=|x|,定义域相同,但是当x<0的时候,函数值不同,所以不是相同的函数。
如上述两个方面都相同,那么就一定是相同的函数了。也就是说①要看定义域是否相同②要看对应法则是否相同,即经化简两函数为同一形式(即式子或数相同)。