发布网友 发布时间:2022-05-05 17:03
共2个回答
热心网友 时间:2022-06-27 19:42
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且∫(a→b)f(x)dx=F(b)-F(a),则可以用牛顿莱布尼兹公式。
牛顿-莱布尼茨公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。 牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。
扩展资料:
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
热心网友 时间:2022-06-27 19:43
如果函数f(x)在区间[a,b]上连续,并且存在原函数F(X) 这就是他的定义 也就是使用条件追问有没有x必须在上面的说法,我写计算题的时候老算错追答你弄个具体的题,我看看是错在什么地方了