发布网友 发布时间:2024-02-18 18:59
共3个回答
热心网友 时间:2024-08-06 16:47
一、可以用可微的相关知识去判断,但是如果题目不是要证明是否可微,对于某些不可微的函数是可以一眼就看出来的,而不用证明。
函数可微的直观几何解释是函数图象在该点是“光滑”的,即函数图象不能是“尖点”,回忆一元函数y=|x|在x=0点的图象是一个尖点,故这个函数在x=0处不可微。本题中二元函数的图象是一个锥体,而(0,0)点对应的z是这个锥体的顶点,它是一个"尖点",所以在该点不可微。
二、按定义,f(x,y)在(0,0)点可微就是要求lim[f(x,y)-f(0,0)-Ax-By]/√(x^2+y^2)=0(A,B是常数),本题中这个极限表达式为lim[1-√(x^2+y^2)-1-Ax-By]/√(x^2+y^2)=1-lim(Ax+By)/√(x^2+y^2),令y=kx,
则lim(Ax+By)/√(x^2+y^2)=(A+Bk)/√(1+k^2),极限与k有关,故这个极限不存在,因此极限lim[1-√(x^2+y^2)-1-Ax-By]/√(x^2+y^2)也就不存在,故在原点不可微。
扩展资料:
魏尔斯特拉斯函数连续,但在任一点都不可微。
若ƒ在X0点可微,则ƒ在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。
实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。
参考资料来源:百度百科-可微函数
热心网友 时间:2024-08-06 16:48
当然可以用可微的相关知识去判断,但是如果题目不是要证明是否可微,对于某些不可微的函数是可以一眼就看出来的,而不用证明。函数可微的直观几何解释是函数图象在该点是“光滑”的,即函数图象不能是“尖点”,回忆一元函数y=|x|在x=0点的图象是一个尖点,故这个函数在x=0处不可微。本题中二元函数的图象是一个锥体,而(0,0)点对应的z是这个锥体的顶点,它是一个"尖点",所以在该点不可微。热心网友 时间:2024-08-06 16:49
z'x=-x/√(x²+y²)