发布网友 发布时间:2022-05-06 06:27
共1个回答
热心网友 时间:2022-06-28 21:53
研究偶数的哥德*猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理以及几乎哥德*问题。
应再增加一个:等差数列。因为合数产生于等差数列的项,而素数产生于等差数列的非数列项。 殆素数就是素因子个数不多的正整数。现设N是偶数,虽然不能证明N是两个素数之和,但足以证明它能够写成两个殆素数的和,即N=A+B,其中A和B的素因子个数都不太多,譬如说素因子个数不超过10。用“a+b”来表示如下命题:每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德*猜想就可以写成1+1。在这一方向上的进展都是用所谓的筛法得到的。
“a + b”问题的推进
1920年,挪威的布朗证明了“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1956年,中国的王元证明了“3 + 4”。稍后证明了 “3 + 3”和“2 + 3”。
1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。 在数轴上取定大整数x,再从x往前看,寻找使得哥德*猜想不成立的那些偶数,即例外偶数。x之前所有例外偶数的个数记为E(x)。我们希望,无论x多大,x之前只有一个例外偶数,那就是2,即只有2使得猜想是错的。这样一来,哥德*猜想就等价于E(x)永远等于1。当然,直到现在还不能证明E(x)=1;但是能够证明E(x)远比x小。在x前面的偶数个数大概是x/2;如果当x趋于无穷大时,E(x)与x的比值趋于零,那就说明这些例外偶数密度是零,即哥德*猜想对于几乎所有的偶数成立。这就是例外集合的思路。
维诺格拉多夫的三素数定理发表于1937年。第二年,在例外集合这一途径上,就同时出现了四个证明,其中包括华罗庚先生的著名定理。
业余搞哥德*猜想的人中不乏有人声称“证明”了哥德*猜想在概率意义下是对的。实际上他们就是“证明”了例外偶数是零密度。这个结论华老早在60年前就真正证明出来了。 1953年,林尼克发表了一篇长达70页的论文。在文中,他率先研究了几乎哥德*问题,证明了,存在一个固定的非负整数k,使得任何大偶数都能写成两个素数与k个2的方幂之和。这个定理,看起来好像丑化了哥德*猜想,实际上它是非常深刻的。我们注意,能写成k个2的方幂之和的整数构成一个非常稀疏的集合;事实上,对任意取定的x,x前面这种整数的个数不会超过log x的k次方。因此,林尼克定理指出,虽然我们还不能证明哥德*猜想,但是我们能在整数集合中找到一个非常稀疏的子集,每次从这个稀疏子集里面拿一个元素贴到这两个素数的表达式中去,这个表达式就成立。这里的k用来衡量几乎哥德*问题向哥德*猜想*近的程度,数值较小的k表示更好的*近度。显然,如果k等于0,几乎哥德*问题中2的方幂就不再出现,从而,林尼克的定理就是哥德*猜想。
林尼克1953年的论文并没有具体定出k的可容许数值,此后四十多年间,人们还是不知道一个多大的k才能使林尼克定理成立。但是按照林尼克的论证,这个k应该很大。1999年,作者与廖明哲及王天泽两位教授合作,首次定出k的可容许值54000。这第一个可容许值后来被不断改进。其中有两个结果必须提到,即李红泽、王天泽独立地得到k=2000。目前最好的结果k=13是英国数学家希思-布朗(D. R. Heath-Brown)和德国数学家普赫塔(Puchta)合作取得的,这是一个很大的突破。