∫lncosx dx(o≤x≤π/2)求解. x=π/2为瑕点,求大虾……
发布网友
发布时间:2024-04-13 17:50
我来回答
共1个回答
热心网友
时间:2024-04-14 01:08
I = ∫ [0,π/2] lncosx dx = ∫ [0,π/2] lnsinx dx
= ∫ [0,π/4] lncosx dx + ∫ [π/4,π/2] lncosx dx
利用下式:
∫ [0,π/4] lnsinx dx
= ∫ [0,π/4] lncos(π/2 -x) dx 令 u = π/2 -x
= ∫ [π/2,π/4] lncosu (-1)
= ∫ [π/4,π/2] lncosu
I = ∫ [0,π/4] lncosx dx + ∫ [0,π/4] lnsinx dx = ∫ [0,π/4] 【lncosx + lnsinx】 dx
= ∫ [0,π/4] ln (1/2) sin2x dx
= - π ln2 / 4 + (1/2) ∫ [0,π/2] lnsinu 令 u = 2x
= - π ln2 / 4 + (1/2) I
=》 I = - π ln2 / 2