如图1,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点...
发布网友
发布时间:2024-04-08 20:44
我来回答
共1个回答
热心网友
时间:2024-04-23 11:56
(1)结论是PE+PF=AB,
理由是:∵PE∥AC,PF∥AB,
∴四边形PEAF是平行四边形,
∴PF=AE,∠EPB=∠C,
∵AC=AB,
∴∠B=∠C,
∴∠EPB=∠B,
∴PE=BE,
∵BE+AE=AB,
∴PE+PF=AB.
(2)结论是PE-PF=AB,
理由是:∵PE∥AC,PF∥AB,
∴四边形PEAF是平行四边形,
∴PE=AF,∠FPC=∠ACB=∠FCP,
∴PF=FC,
PE-PF=AC=AB,
即PE-PF=AB.