发布网友 发布时间:2022-04-21 00:36
共5个回答
热心网友 时间:2022-06-03 14:37
展开3全部圆锥曲线的公式主要有以下:
1、椭圆∶焦半径∶a+ex(左焦点),a-ex(右焦点),x=a²/c
2、双曲线∶焦半径∶|a+ex|(左焦点)|a-ex|(右焦点),准线x=a²/c
3、抛物线(y²=2px)∶焦半径∶x+p/2准线∶x=-p/2
弦长=√k²+1*√(x1+x2)²-4x1x2以上是焦点在x轴的,y轴只需将x换成y即可。
二.双曲线
1.通径长 = 2b²/a
2.焦半径公式(有8个,很难打符号的,不过可以根据极坐标方程来直接解答,比焦半径公式还快一些)
3.焦点三角形面积公式
S⊿PF1F2 =b²cot(θ/2)
三.抛物线
y²=2px (p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点
1.│AB│=X1 + X2 + p =2p/sin²θ (θ为直线AB的倾斜角)
2. Y1*Y2 = -p² , X1*X2 = p²/4
3.1/│FA│ + 1/│FB│ = 2/p
4.结论:以AB 为直径的圆与抛物线的准线线切
5.焦半径公式: │FA│= X1 + p/2 = p/(1-cosθ)
①圆锥曲线(conic section),又称圆锥截痕、圆锥截面、二次曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线。
②阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。事实上,阿波罗尼在其着作中使用纯几何方法已经取得了今天高中数学中关于圆锥曲线的全部性质和结果。
百度百科“圆锥曲线”
热心网友 时间:2022-06-03 14:38
共有如下三种:
1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
椭圆的标准方程共分两种情况:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);
其中a^2-c^2=b^2
推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点)
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
双曲线的标准方程共分两种情况:
焦点在X轴上时为
x^2/a^2 - y^2/b^2 = 1;
焦点在Y 轴上时为
y^2/a^2 - x^2/b^2 = 1;
3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 y²=2px (p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点。
抛物线标准方程共分四种情况:
右开口抛物线:y^2=2px;
左开口抛物线:y^2= -2px;
上开口抛物线:x^2=2py;
下开口抛物线:x^2= -2py;
[p为焦距(p>0)]
圆锥曲线包括圆,椭圆,双曲线,抛物线。其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
热心网友 时间:2022-06-03 14:38
1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。热心网友 时间:2022-06-03 14:39
一.椭圆热心网友 时间:2022-06-03 14:40
圆锥曲线包括椭圆,双曲线,抛物线