发布网友 发布时间:2024-02-12 13:56
共1个回答
热心网友 时间:2024-08-06 04:49
令x=sint
x:0→1,则t:0→π/2
∫[0:1]√(1-x²)dx
=∫[0:π/2]√(1-sin²t)d(sint)
=∫[0:π/2]cos²tdt
=½∫[0:π/2](1+cos2t)dt
=(½t+¼sin2t)|[0:π/2]
=[½·(π/2)+¼sinπ]-(½·0+¼sin0)
=π/4
扩展资料:
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
参考资料来源:百度百科-定积分