发布网友 发布时间:2024-01-08 07:27
共2个回答
热心网友 时间:2024-11-26 20:53
令Sn=1/2+ 3/2²+ 5/2³+...+(2n-1)/2ⁿ
则½Sn=1/2²+ 3/2³+...+(2n-3)/2ⁿ+ (2n-1)/2ⁿ⁺¹
Sn-½Sn=½Sn=1/2 +2/2²+2/2³+...+ 2/2ⁿ-(2n-1)/2ⁿ⁺¹
=1/2 +1/2+1/2²+...+1/2ⁿ⁻¹ -(2n-1)/2ⁿ⁺¹
Sn=1+1+ 1/2+...+1/2ⁿ⁻²-(2n-1)/2ⁿ
=1+1·(1-½ⁿ⁻¹)/(1-½) -(2n-1)/2ⁿ
=3 - (2n+3)/2ⁿ
∞
∑ (2n-1)/2ⁿ
n=1
=lim [3- (2n+3)/2ⁿ]
n→∞
=3 -lim [2/(2ⁿ·ln2)]
n→∞
=3-0
=3
热心网友 时间:2024-11-26 20:53
简单计算一下即可,答案如图所示