log4j中log的底数是什么?
发布网友
发布时间:2024-01-06 01:07
我来回答
共1个回答
热心网友
时间:2024-03-14 04:39
首先使用换底公式将 $log_2 8$ 和 $log_4 9$ 转化为同一底数,可以得到:
$$\begin{aligned} log_4 9 \cdot log_2 8 &= \frac{log_2 9}{log_2 4} \cdot \frac{log_4 8}{log_4 2} \\
&= \frac{2log_2 3}{2} \cdot \frac{3/2}{1/2} \\
&= (log_2 3) (3) \\
&= log_2 {(3^3)} \\
&= log_2 (27)
\end{aligned}$$
因此,$log_4 9 \cdot log_2 8 = log_2 (27)$。答案是 $log_2 (27)$。