小波变换在图像压缩中的有哪些应用
发布网友
发布时间:2022-05-03 01:36
我来回答
共1个回答
热心网友
时间:2022-06-29 03:44
小波变换在现代信号处理方面应用很广泛。同傅里叶变换相比,在信号处理方面更有优势。
它包括:数学领域的许多学科;信号分析、图象处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图象处理方面的图象压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。
(1)小波分析用于信号与图象压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图象的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。
(2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
(3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。