发布网友 发布时间:2022-05-02 13:36
共1个回答
热心网友 时间:2022-06-20 07:19
从图像中提取的特征可以组成一个向量,两个图像之间可以通过定义一个距离或者相似性的测量度来计算相似程度。
特征匹配是图像检索的一个关键环节,具有特征依赖的特点,不同的特征应该采用不同的度量方法。在检索的过程中,根据系统相似性度量的算法计算查询特征与特征库中对应的每组特征的相似程度,把所得结果由大到小排序后得到一个匹配图像序列返回给用户。其间可以通过人机交互,对检索的结果逐步求精,不断缩小匹配集合的范围,从而定位到目标。匹配过程常利用特征向量之间的距离函数来进行相似性度量,模仿人类的认知过程,近似得到数据库的认知排序。常用的距离度量公式有:Minkkowsky距离,Manhattan距离,Euclidean距离,加权Euclidean距离,Chebyshev距离,Mahalanobis距离等。
其中,Manhattan 距离计算简单,效果也较好,被广泛采用;加权Euclidean 距离考虑了不同分量的重要性,也较为常用;Mahalanobis 距离考虑了样品的统计特性和样品之间的相关性,在聚类分析中经常用到。当采用综合特征进行检索时,需要对各特征向量进行归一化,以使得综合特征的各特征向量在相似距离计算中地位相同。