二元一次方程的解法步骤例题
发布网友
发布时间:2022-05-02 10:06
我来回答
共1个回答
热心网友
时间:2022-06-19 04:14
代入消元法是将方程组中的一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,这就消去了一个未知数,得到一个解。代入消元法简称代入法。
思路:解方程组的基本思路是“消元”——把“二元”变成“一元”。
方法:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。
这种解方程组的方法叫做代入消元法,简称代入法。
代入法解二元一次方程组的步骤:
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
如果是分式方程组,化为二元一次方程组时,用了代入消元法,最后也要检验方程组的结果是否正确。
希望我能帮助你解疑释惑。