复变函数的留数计算4
发布网友
发布时间:2024-02-09 08:38
我来回答
共1个回答
热心网友
时间:2024-03-21 23:31
解:设f(z)=z^2/[(1+z^2)(4+z^2)],则f(z)在上半平面有两个一级极点z1=i、z2=2i。
∴按照留数定理,原式=2πi{Res[f(z),z1]+Res[f(z),z2]}。
而,Res[f(z),z1]=lim(z→z1)(z-z1)f(z)=z^2/[(i+z)(4+z^2)]丨(z=i)=-1/(6i)、Res[f(z),z2]=lim(z→z2)(z-z2)f(z)=z^2/[(1+z^2)(2i+z)]丨(z=2i)=1/(3i),
∴原式=2πi[-1/(6i)+1/(3i)]=π/3。
供参考。