大学高数,数学高手进
发布网友
发布时间:2024-03-01 07:15
我来回答
共3个回答
热心网友
时间:2024-11-15 22:44
正交矩阵的行列式都等于±1,所以若|A|+|B|=0,则|A|,|B|一个为1,一个为-1.
因为A,B是正交矩阵,所以AA'=A'A=E,BB'=B'B=E,这里A',B'表示矩阵的转置,E为单位矩阵.
|A+B|=-|A'|×|A+B|×|B'|=-|A'(A+B)B'|=-|A'+B'|=-|A+B|,所以|A+B|=0
热心网友
时间:2024-11-15 22:44
解:(1) 由A,B均为正交矩阵 可得 AA'=A'A=E,BB'=B'B=E
则|AA'|=|A||A'|=|E|=1 |BB'|=|B||B'|=|E|=1
又 |A|=|A'| |B|=|B'| 则|A|=1或者-1 |B|=1或者-1 可得
|A||A|=|AA|=1=|E| |B||B|=|BB|=1=|E| 即 AA=BB=E
又 |A|=-|B| 可得|A||B|=|AB|=-1=-|E|=|-E| 即AB=-E
所以:
|A+B||A+B|=|(A+B)(A+B)|=|AA+AB+BA+BB|=|E-E-E+E|=|0|=0
则|A+B|=0
热心网友
时间:2024-11-15 22:45
??? 这题是书上的原题吧