发布网友 发布时间:2023-12-20 00:02
共1个回答
热心网友 时间:2024-01-16 21:14
此题关键是分步积分法和三角函数的降阶等。
分部积分法
设函数和u,v具有连续导数,则d(uv)=udv+v。移项得到udv=d(uv)-v
两边积分,得分部积分公式
∫udv=uv-∫v。 ⑴
称公式⑴为分部积分公式.如果积分∫v易于求出,则左端积分式随之得到.
分部积分公式运用成败的关键是恰当地选择u,v
一般来说,u,v 选取的原则是:
1、积分容易者选为v, 2、求导简单者选为u。
例子:∫Inx dx中应设U=Inx,V=x
分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。
有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.
可以证明,任何真分式总能分解为部分分式之和。
降次公式:
(cosX)^2=(1+cos2X)/2
(sinX)^2=(1-cos2X)/2