问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

学习机器学习如何掌握数学知识?

发布网友 发布时间:2022-04-11 21:43

我来回答

2个回答

懂视网 时间:2022-04-12 02:04

线性回归定义: 在上一个主题中,也是一个与回归相关的,不过上一节更侧重于梯度这个概念,这一节更侧重于回归本身与偏差和方差的概念。 回归最简单的定义是,给出一个点集D,用一个函数去拟合这个点集,并且使得点集与拟合函数间的误差最

线性回归定义:

在上一个主题中,也是一个与回归相关的,不过上一节更侧重于梯度这个概念,这一节更侧重于回归本身与偏差和方差的概念。

回归最简单的定义是,给出一个点集D,用一个函数去拟合这个点集,并且使得点集与拟合函数间的误差最小。

上图所示,给出一个点集(x,y), 需要用一个函数去拟合这个点集,蓝色的点是点集中的点,而红色的曲线是函数的曲线,第一张图是一个最简单的模型,对应的函数为y = f(x) = ax + b,这个就是一个线性函数,

第二张图是二次曲线,对应的函数是y = f(x) = ax^2 + b。

第三张图我也不知道是什么函数,瞎画的。

第四张图可以认为是一个N次曲线,N = M - 1,M是点集中点的个数,有一个定理是,对于给定的M个点,我们可以用一个M - 1次的函数去完美的经过这个点集。

真正的线性回归,不仅会考虑使得曲线与给定点集的拟合程度最好,还会考虑模型最简单,这个话题我们将在本章后面的偏差、方差的权衡中深入的说,另外这个话题还可以参考我之前的一篇文章:贝叶斯、概率分布与机器学习,里面对模型复杂度的问题也进行了一些讨论。

线性回归(linear regression),并非是指的线性函数,也就是

(为了方便起见,以后向量我就不在上面加箭头了)

x0,x1…表示一个点不同的维度,比如说上一节中提到的,房子的价钱是由包括面积、房间的个数、房屋的朝向等等因素去决定的。而是用广义的线性函数:

wj是系数,w就是这个系数组成的向量,它影响着不同维度的Φj(x)在回归函数中的影响度,比如说对于房屋的售价来说,房间朝向的w一定比房间面积的w更小。Φ(x)是可以换成不同的函数,不一定要求Φ(x)=x,这样的模型我们认为是广义线性模型。

最小二乘法与最大似然:

这个话题在此处有一个很详细的讨论,我这里主要谈谈这个问题的理解。最小二乘法是线性回归中一个最简单的方法,它的推导有一个假设,就是回归函数的估计值与真实值间的误差假设是一个高斯分布。这个用公式来表示是下面的样子: ,y(x,w)就是给定了w系数向量下的回归函数的估计值,而t就是真实值了,ε表示误差。我们可以接下来推出下面的式子:

这是一个简单的条件概率表达式,表示在给定了x,w,β的情况下,得到真实值t的概率,由于ε服从高斯分布,则从估计值到真实值间的概率也是高斯分布的,看起来像下面的样子:

贝叶斯、概率分布与机器学习这篇文章中对分布影响结果这个话题讨论比较多,可以回过头去看看,由于最小二乘法有这样一个假设,则会导致,如果我们给出的估计函数y(x,w)与真实值t不是高斯分布的,甚至是一个差距很大的分布,那么算出来的模型一定是不正确的,当给定一个新的点x’想要求出一个估计值y’,与真实值t’可能就非常的远了。

概率分布是一个可爱又可恨的东西,当我们能够准确的预知某些数据的分布时,那我们可以做出一个非常精确的模型去预测它,但是在大多数真实的应用场景中,数据的分布是不可知的,我们也很难去用一个分布、甚至多个分布的混合去表示数据的真实分布,比如说给定了1亿篇网页,希望用一个现有的分布(比如说混合高斯分布)去匹配里面词频的分布,是不可能的。在这种情况下,我们只能得到词的出现概率,比如p(的)的概率是0.5,也就是一个网页有1/2的概率出现“的”。如果一个算法,是对里面的分布进行了某些假设,那么可能这个算法在真实的应用中就会表现欠佳。最小二乘法对于类似的一个复杂问题,就很无力了

偏差、方差的权衡(trade-off):

偏差(bias)和方差(variance)是统计学的概念,刚进公司的时候,看到每个人的嘴里随时蹦出这两个词,觉得很可怕。首先得明确的,方差是多个模型间的比较,而非对一个模型而言的,对于单独的一个模型,比如说:

这样的一个给定了具体系数的估计函数,是不能说f(x)的方差是多少。而偏差可以是单个数据集中的,也可以是多个数据集中的,这个得看具体的定义。

方差和偏差一般来说,是从同一个数据集中,用科学的采样方法得到几个不同的子数据集,用这些子数据集得到的模型,就可以谈他们的方差和偏差的情况了。方差和偏差的变化一般是和模型的复杂程度成正比的,就像本文一开始那四张小图片一样,当我们一味的追求模型精确匹配,则可能会导致同一组数据训练出不同的模型,它们之间的差异非常大。这就叫做方差,不过他们的偏差就很小了,如下图所示:

上图的蓝色和绿色的点是表示一个数据集中采样得到的不同的子数据集,我们有两个N次的曲线去拟合这些点集,则可以得到两条曲线(蓝色和深绿色),它们的差异就很大,但是他们本是由同一个数据集生成的,这个就是模型复杂造成的方差大。模型越复杂,偏差就越小,而模型越简单,偏差就越大,方差和偏差是按下面的方式进行变化的:

当方差和偏差加起来最优的点,就是我们最佳的模型复杂度。

用一个很通俗的例子来说,现在咱们国家一味的追求GDP,GDP就像是模型的偏差,国家希望现有的GDP和目标的GDP差异尽量的小,但是其中使用了很多复杂的手段,比如说倒卖土地、强拆等等,这个增加了模型的复杂度,也会使得偏差(居民的收入分配)变大,穷的人越穷(被赶出城市的人与进入城市买不起房的人),富的人越富(倒卖土地的人与卖房子的人)。其实本来模型不需要这么复杂,能够让居民的收入分配与国家的发展取得一个平衡的模型是最好的模型。

最后还是用数学的语言来描述一下偏差和方差:

E(L)是损失函数,h(x)表示真实值的平均,第一部分是与y(模型的估计函数)有关的,这个部分是由于我们选择不同的估计函数(模型)带来的差异,而第二部分是与y无关的,这个部分可以认为是模型的固有噪声。

对于上面公式的第一部分,我们可以化成下面的形式:

这个部分在PRML的1.5.5推导,前一半是表示偏差,而后一半表示方差,我们可以得出:损失函数=偏差^2+方差+固有噪音。

下图也来自PRML:

这是一个曲线拟合的问题,对同分布的不同的数据集进行了多次的曲线拟合,左边表示方差,右边表示偏差,绿色是真实值函数。ln lambda表示模型的复杂程度,这个值越小,表示模型的复杂程度越高,在第一行,大家的复杂度都很低(每个人都很穷)的时候,方差是很小的,但是偏差同样很小(国家也很穷),但是到了最后一幅图,我们可以得到,每个人的复杂程度都很高的情况下,不同的函数就有着天壤之别了(贫富差异大),但是偏差就很小了(国家很富有)。

热心网友 时间:2022-04-11 23:12

我们都知道,现在的很多知识都是离不开数学,比如说在机器学习中,数学工具是一个十分重要的工具,正是因为拥有了这些数学知识,我们才能够利用机器学习解决很多的问题,才能够为人工智能提供贡献。不过数学都是大家公认比较难的知识,在这篇文章中我们就讲讲如何快速掌握数学知识。
1.掌握核心概念
第一需要掌握核心概念,在这方面,建议大家从两方面着手,一方面是,我们要握核心概念,在线性代数当中核心概念是什么?就是线性空间,向量矩阵以及对于向量矩阵的度量,包括范数、包括内积这些,这些就是它的核心概念。那么在概率统计当中,频率学派,还有贝叶斯学派,他们两者之间的区别是一个核心概念,同时呢,像期望方差这些指标,还有条件概率,这样的一些概念,条件概率联合概率这样一些概念也是核心概念。那么在最优化当中,这些算法,这个梯度下降法,或者牛顿法,这就是核心概念。这样我们才能够更好的了解这些知识。
2.梳理好知识体系
很多人学习数学工具知识都是十分紧凑的,在时间有限的情况下,我们一定要把有限的精力集中在重要的知识上。先把这些核心概念搞清楚,再通过这些核心的概念,来以点代面,从这些关键的问题去铺开,慢慢地去接触其他的问题。
3.了解问题导向
在学习的时候,我们可以以问题为导向,就是结合着我们实际的需求,结合我们实际的问题,来决定我们去学什么。掌握到什么程度是我们需要注意的内容,我们学习,机器学习,学习机器学习当中的数学都是为了解决问题。如果不能解决问题的话,我们学到的这个东西的价值就没有能够解决问题的这个知识的价值大。当然我们也不能说一点价值都没有。在学习的时候,大家可以尝试着以问题为导向。带着问题去探索这些知识,带着问题去学习知识,可能你会发现,这样会得到更高的效率。所以大家可以做好这些内容。
相信大家看到这里已经知道如何去学习机器学习中的数学知识了吧?大家在学习机器学习的时候还是要做好知识的梳理,这样方便大家更好地理解机器学习知识,希望这篇文章能够帮助大家。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
八月中国最凉快的地方 八月份哪里最凉快,去哪旅游好?美丽的地方 乱字同韵字是什么意思 华硕笔记本电脑触摸板怎么开笔记本电脑触摸板怎么开启和关闭_百度知 ... 陕西职务侵占案立案准则 结婚后我的恋情维系了十年,怎么做到的? 玉米仁子饭产自哪里 中国期货交易所的交易品种有哪些? 历史要怎么读,有啥诀窍 高中历史诀窍 机器学习需要哪些数学基础 FCKeditor这款在线编辑控件如何在ASP.NET中使用呢?求一个Demo? ASP.NET使用FCKeditor.Net_2.6.3配置? fckeditor上传图片问题 不能上传 asp.net 下 FCKeditor没有显示 fckeditor 的问题 asp.net中报错:“未能加载类型form1”怎么解决 FredCK.FCKeditorV2 设置ForcePasteAsPlainText属性 未能加载文件或程序集"CuteEditor"或它的某一个依赖项.系统找不到指定的文件. ASP.NET FCKeditor_2.6.5 出错 asp.net运行时电脑死机了,现在项目再也启动不了,只能在iis里访问 未能加载文件或程序集?什么问题?怎么办? 360不支持这个FredCK.FCKeditorV2文本编辑器怎么弄 FredCK.FCKeditorV2.dll 控件 未能加载文件或程序集“FredCK.FCKeditorV2”或它的某一个依赖项。系统找不到指定的文件。 未能加载文件或程序集“FredCK.FCKeditorV2 asp.net 未能加载类型“FredCK.FCKeditorV2.FileBrowser.Config asp.net 未能加载类型“FredCK.FCKeditorV2.FileBrowser.Config” wincc的日历控件可不可以做到下拉菜单中,用来显示历史数据显示的时间段选取? 日历控件的重要属性有( )和( )和( )和()。 在机器学习中如何快速地掌握数学知识? 机器学习应补充哪些数学基础? 机器学习中的线性代数 机器学习对数学功底的要求到底有多高 机器学习应该准备哪些数学预备知识? 七月在线的机器学习中的数学这个学了有什么用?对机器学习有帮助吗? 关于机器学习的数学基础问题? 机器学习里,数学到底有多重要 机器学习应补充哪些数学基础 python机器学习数学 reiserfsprogs-3.6.21.tar.bz2是什么文件 .tar.bz2是什么文件来的?? arcgis10 有没有在linux上安装的版本? ArcGIS 10与ArcGIS Server哪个版本是配套的呀? MFC Unhandled exception in ***.exe(OLE32.DLL):0xC0000005:Access Violation C++ MFC问题:Unhandled exception in ***.exe (MFC 42D.DLL):0xC0000005:Access Violation 用VC调试时出现了0xC0000005: Access Violation. vc6调用某dll出现“unhandled exception in testdev.exe(mfc42.dll):0xc00000005:access violation”? 0xC0000005:Aceess Violation 在vs里之前能运行的好的程序,现在都是这个问题,请高人指教。有未处理异常 0xC0000005: Access violation