发布网友 发布时间:2022-04-21 06:49
共1个回答
热心网友 时间:2023-11-06 21:33
如何判定极限的存在介绍如下:
判断极限是否存在的方法是:
分别考虑左右极限。
当x趋向于0-(左极限)时,limy=2。
x趋向0+,limy=1,左右不等,所以x趋向0时,limy不存在。
类似可得,x趋向1-和x趋向1+时,都有limy=2,即此时limy=2。
注意!极限存在的充分必要条件是左右极限都存在且相等。
洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。
洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。
扩展资料:
常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
当然还会有其他的变形方式,需要通过练习来熟练。