发布网友 发布时间:2024-02-28 08:29
共4个回答
热心网友 时间:2024-10-02 06:52
(1-cosx)^3
=(1-cosx)(1-cosx)^2
=(1-cosx)(1-2cosx+(cosx)^2)
=1-2cosx+(cosx)^2-cosx+2(cosx)^2-(cosx)^3
=1-3cosx+3(cosx)^2-(cosx)^3
一个个来
1、∫1dx=x
2、∫3cosx dx=3sinx
3、∫3(cosx)^2=3∫[(cos2x)+1]/2 dx
=(3/4)∫(cos2x+1) d2x
=(3/4)(sin2x+2x)
4、∫(cosx)^3 dx=∫(cosx)^2 dsinx
=∫[1-(sinx)^2]dsinx
=sinx-[(sinx)^3]/3
所以,原式={x-3sinx+(3/4)(sin2x+2x)-sinx+[(sinx)^3]/3}+C
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。
把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距相等。
设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
参考资料来源:百度百科——定积分
热心网友 时间:2024-10-02 06:52
[最佳答案]使用分部积分,高数书上也有递推公式,针对就是cosx的n次方分之1那种情形的。热心网友 时间:2024-10-02 06:50
使用分部积分,高数书上也有递推公式,针对就是cosx的n次方分之1那种情形的。
热心网友 时间:2024-10-02 06:53
直接使用公式98,简单快捷
详情如图所示,有任何疑惑,欢迎追问