发布网友 发布时间:2023-06-02 08:16
共1个回答
热心网友 时间:2023-11-21 15:25
yolov5做毕设的难点如下:
yolo容易漏检,但ssd不容易。
YOLO虽然能够达到实时的效果,但是其mAP与刚面提到的的结果有很大的差距,每个网格只预测一个物体,容易造成漏检。
针对YOLO中的这些不足,该论文提出的方法SSD在这两方面都有所改进,同时兼顾了mAP和实时性的要求。在满足实时性的条件下,接近stateofart的结果。
网上关于用v5训练自己数据集的教程还是比较多的。v5的代码用起来很方便,模块化了的。
难的是需要搞清楚v5的原理以及如何将最新的一些算法加入到v5,针对性地提高自己训练集的效果。如果你够厉害的话也可以针对v5的一个板块提出自己新的算法,比如改进CIOU之类的。
文献综述好好写,论文格式好好弄。
主要是因为yolo本身的思想已经很成熟了,在这个框架下的确很难做出些通用性的创新和提升。至于把各种成熟的模块塞进去*文,这种仁者见仁智者见智吧。个人感觉还是结合某个方向改进yolo,会有方向一些。毕竟不同的数据集和尺度上,同样的改进有时候效果也是不同的。
Yolov5 目标检测的损失函数由三部分组成,分别是矩形框预测损失函数、置信度预测损失函数以及类别预测损失函数,在上节中分析了目标检测损失函数GIoU 的缺陷及其改进,使用 CIoU 以及带有调节因子的二元交叉熵函数替代原网络的损失函数。