发布网友 发布时间:2023-05-27 15:09
共2个回答
热心网友 时间:2023-05-28 09:17
函数可微,那么偏导数一定存在,且连续。
若函数在某点可微分,则函数在该点必连续;若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
扩展资料
偏导数的几何意义:
二元函数z=f(x,y)在点(x0,y0)处的偏导数f'x(x0,y0)是曲面z=f(x,y)与平面y=y0的交线,即是平行于zOx坐标面的平面y=y0上的曲线z=f(x,y0)在点P(x0,y0,f(x0,y0))处的切线的斜率,也就是切线与该平面和xOy的交线。
沿x轴方向的夹角的正切,如果把切线平移到zOx面上的话,夹角就是切线对x轴的倾斜角。偏导数的几何意义:就是一条曲线上的斜率。
参考资料来源:
百度百科-可微
热心网友 时间:2023-05-28 09:17
注意可导一定连续,连续不一定可导。你的说法不对。