发布网友 发布时间:2022-04-23 14:04
共5个回答
热心网友 时间:2023-10-17 07:14
统计中t值和p值的区别为:
1、t值,指的是T检验,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
2、P值,就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果P值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表。
3、P值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成P值,或者将显著性水平换算成t值。在相同自由度下,查t表所得t统计量值越大,其尾端概率P越小,两者是此消彼长的关系,但不是直线型负相关。
扩展资料:
1、T检验的适用条件:
(1) 已知一个总体均数;
(2)可得到一个样本均数及该样本标准差;
(3) 样本来自正态或近似正态总体
2、P值数据解释:
参考资料:百度百科_P值百度百科_t检验
热心网友 时间:2023-10-17 07:14
一、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料
二、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。
扩展资料:
T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与Z检验、卡方检验并列。
t检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新*。
戈斯特于1908年在Biometrika上公布t检验,但因其老板认为其为商业机密而*使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。
P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进 行比较。由R·A·Fisher首先提出。
P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是"显著的"、"中度显著的"还是"高度显著的"需要我们自己根据P值的大小和实际问题来解决。
参考资料:百科-P值 百科-t检验
热心网友 时间:2023-10-17 07:15
T值就是这些统计检定值,与它们相对应的概率分布,就是t分布。统计显著性(sig)就是出现目前样本这结果的机率。
P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
拓展资料
R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)
Fisher的具体做法是:
假定某一参数的取值。
选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。
从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。
如果0.01<P值<0.05,说明较弱的判定结果,拒绝假定的参数取值。
如果P值>0.05,说明结果更倾向于接受假定的参数取值。
可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。
因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。
参考资料来源:百度百科-t检验百度百科-P值
热心网友 时间:2023-10-17 07:15
1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。
2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
3、在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。
拓展资料
统计一词起源于国情调查,最早意为国情学。原始的统计工作即人们收集数据的原始形态已经有几千年的历史,而它作为一门科学,是从17世纪开始。
一般来说,统计包括三个含义:统计工作、统计资料和统计科学。
(1)统计工作。指利用科学的方法搜集、整理和分析和提供关于社会经济现象数量资料的工作的总称,是统计的基础。也称统计实践,或统计活动,是在一定统计理论指导下,采用科学的方法,搜集、整理、分析统计资料的一系列活动过程。
(2)统计资料。指通过统计工作取得的、反映社会经济现象的数据资料的总称。统计工作所取得的各项数字资料及有关文字资料,一般反映在统计表、统计图、统计手册、统计年鉴、统计资料汇编和统计分析报告中。
(3)统计科学。也称统计学,是统计工作经验的总结和理论概括,是系统化的知识体系。指研究如何搜集、整理和分析统计资料的理论与方法。
统计工作的成果是统计资料,统计资料和统计科学的基础是统计工作,统计科学既是统计工作经验的理论概括,又是指导统计工作的原理、原则和方法。
参考资料:百度百科 统计
热心网友 时间:2023-10-17 07:16
t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料
P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。
热心网友 时间:2023-10-17 07:14
统计中t值和p值的区别为:
1、t值,指的是T检验,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
2、P值,就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果P值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表。
3、P值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成P值,或者将显著性水平换算成t值。在相同自由度下,查t表所得t统计量值越大,其尾端概率P越小,两者是此消彼长的关系,但不是直线型负相关。
扩展资料:
1、T检验的适用条件:
(1) 已知一个总体均数;
(2)可得到一个样本均数及该样本标准差;
(3) 样本来自正态或近似正态总体
2、P值数据解释:
参考资料:百度百科_P值百度百科_t检验
热心网友 时间:2023-10-17 07:14
一、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料
二、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。
扩展资料:
T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与Z检验、卡方检验并列。
t检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新*。
戈斯特于1908年在Biometrika上公布t检验,但因其老板认为其为商业机密而*使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。
P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进 行比较。由R·A·Fisher首先提出。
P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是"显著的"、"中度显著的"还是"高度显著的"需要我们自己根据P值的大小和实际问题来解决。
参考资料:百科-P值 百科-t检验
热心网友 时间:2023-10-17 07:15
T值就是这些统计检定值,与它们相对应的概率分布,就是t分布。统计显著性(sig)就是出现目前样本这结果的机率。
P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
拓展资料
R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)
Fisher的具体做法是:
假定某一参数的取值。
选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。
从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。
如果0.01<P值<0.05,说明较弱的判定结果,拒绝假定的参数取值。
如果P值>0.05,说明结果更倾向于接受假定的参数取值。
可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。
因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。
参考资料来源:百度百科-t检验百度百科-P值
热心网友 时间:2023-10-17 07:15
1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。
2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
3、在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。
拓展资料
统计一词起源于国情调查,最早意为国情学。原始的统计工作即人们收集数据的原始形态已经有几千年的历史,而它作为一门科学,是从17世纪开始。
一般来说,统计包括三个含义:统计工作、统计资料和统计科学。
(1)统计工作。指利用科学的方法搜集、整理和分析和提供关于社会经济现象数量资料的工作的总称,是统计的基础。也称统计实践,或统计活动,是在一定统计理论指导下,采用科学的方法,搜集、整理、分析统计资料的一系列活动过程。
(2)统计资料。指通过统计工作取得的、反映社会经济现象的数据资料的总称。统计工作所取得的各项数字资料及有关文字资料,一般反映在统计表、统计图、统计手册、统计年鉴、统计资料汇编和统计分析报告中。
(3)统计科学。也称统计学,是统计工作经验的总结和理论概括,是系统化的知识体系。指研究如何搜集、整理和分析统计资料的理论与方法。
统计工作的成果是统计资料,统计资料和统计科学的基础是统计工作,统计科学既是统计工作经验的理论概括,又是指导统计工作的原理、原则和方法。
参考资料:百度百科 统计
热心网友 时间:2023-10-17 07:16
t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料
P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。