发布网友 发布时间:2023-01-18 00:14
共4个回答
热心网友 时间:2023-11-20 12:34
1/2*(1/1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+...1/2(1/99-1/101)=1/2(1/1-1/3+1/3-1/5+1/5-...1/99-1/101)=1/2(1/1-1/101)=50/101热心网友 时间:2023-11-20 12:34
31/2=1/(1乘以2)=1/1-1/2 1/6=1/(2乘以3)=1/2-1/3 1/12=1/(3乘以4)=1/3-1/4...n(n+1)=1/n-1/n+1。将以上n各等式相加得到1/(1乘以2)+1/(2乘以3)+1/(3乘以4)+...+1-1/n(n+1)=1-1/(n+1)。用上述方法计算:1/(1乘以3)+1/(3乘以5)+1/(5乘以7)+...+1/(99乘以101)热心网友 时间:2023-11-20 12:34
1/2*(1/1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+...1/2(1/99-1/101)=1/2(1/1-1/3+1/3-1/5+1/5-...1/99-1/101)=1/2(1/1-1/101)=50/101热心网友 时间:2023-11-20 12:34
31/2=1/(1乘以2)=1/1-1/2 1/6=1/(2乘以3)=1/2-1/3 1/12=1/(3乘以4)=1/3-1/4...n(n+1)=1/n-1/n+1。将以上n各等式相加得到1/(1乘以2)+1/(2乘以3)+1/(3乘以4)+...+1-1/n(n+1)=1-1/(n+1)。用上述方法计算:1/(1乘以3)+1/(3乘以5)+1/(5乘以7)+...+1/(99乘以101)热心网友 时间:2023-11-20 12:35
158热心网友 时间:2023-11-20 12:36
FGNYFHDFYGHGGFFDFSDSSAEDGGVHY热心网友 时间:2023-11-20 12:35
158热心网友 时间:2023-11-20 12:36
FGNYFHDFYGHGGFFDFSDSSAEDGGVHY