有没有40道一次函数?
发布网友
发布时间:2022-12-24 18:33
我来回答
共3个回答
热心网友
时间:2023-10-09 19:37
1、 已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;
(1) 分别写出两条直线解析式,并画草图;
(2) 计算四边形ABCD的面积;
(3) 若直线AB与DC交于点E,求△BCE的面积。
2、 如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;
(1) 求△COP的面积;
(2) 求点A的坐标及p的值;
(3) 若△BOP与△DOP的面积相等,求直线BD的函数解析式。
3、(06南京)某块试验田里的 (天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.
(1)分别求出 ≤40和 ≥40时, 与 之间的关系式;
(2)如果这些农作物每天的需水量大于或等于4000千克时需要进行人工灌溉,那么应从第几天开始进行人工灌溉?
x(分钟)
0
y(米)
1000
800
600
400
200
2 4 5 6 8 10
A
B
4、小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离 (米)关于时间 (分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:
(1)小文走了多远才返回家拿书?
(2)求线段 所在直线的函数解析式;
(3)当 分钟时,求小文与家的距离.
5、已知: 经过点(-3,-2),它与x轴,y轴分别交于点B、A,直线 经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D
(1)求直线 的解析式;
(2)若直线 与 交于点P,求 的值。
6. 如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。
7、某加油站五月份营销一种油品的销售利润 (万元)与销售量 (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:
(1)求销售量 为多少时,销售利润为4万元;
(2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)
1日:有库存6万升,成本价4元/升,售价5元/升.
13日:售价调整为5.5元/升.
15日:进油4万升,成本价4.5元/升.
31日:本月共销售10万升.
五月份销售记录
O
x
(万升)
y(万元)
C
B
A
4
5.5
10
8、阅读下面的材料:
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数 的图象为直线 ,一次函数 的图象为直线 ,若 ,且 ,我们就称直线 与直线 互相平行.
解答下面的问题:
(1)求过点 且与已知直线 平行的直线 的函数表达式,并画出直线 的图象;
2
4
6
2
4
6
-2
-2
(2)设直线 分别与 轴、 轴交于点 、 ,如果直线 : 与直线 平行且交 轴于点 ,求出△ 的面积 关于 的函数表达式.
9、在平面直角坐标中,边长为2的正方形 的两顶点 、 分别在 轴、 轴的正半轴上,点 在原点.现将正方形 绕 点顺时针旋转,当 点第一次落在直线 上时停止旋转,旋转过程中, 边交直线 于点 , 边交 轴于点 (如图).
O
A
B
C
M
N
(1)求边 在旋转过程中所扫过的面积;
(2)旋转过程中,当 和 平行时,求正方形
旋转的度数;
(3)设 的周长为 ,在旋转正方形
的过程中, 值是否有变化?请证明你的结论.
10、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.
(1)甲、乙两地之间的距离为 8 km,乙、丙两地之间的距离为 2 km;
(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?
(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.
2·
4·
6·
8·
S(km)
2
0
t(h)
A
B
11、如图,直线 与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为 ,正方形OCMD与△AOB重叠部分的面积为S.试求S与 的函数关系式并画出该函数的图象.
B
x
y
M
C
D
O
A
图(1)
B
x
y
O
A
图(2)
B
x
y
O
A
图(3)
0
2·
4·
·
2
·
4
S
的函数关系式并画出该函数的图象.
12、某加油站五月份营销一种油品的销售利润 (万元)与销售量 (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:
(1)求销售量 为多少时,销售利润为4万元;
(2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)
13、在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.
根据图像信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由;
(2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.
14、邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离 (千米)和小王从县城出发后所用的时间 (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:
(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.
(2)小王从县城出发到返回县城所用的时间.
(3)李明从A村到县城共用多长时间?
15、星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量 (立方米)与时间 (小时)的函数关系如图2所示.
(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?
(2)当 时,求储气罐中的储气量 (立方米)与时间 (小时)的函数解析式;
(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.
y(立方米)
x(小时)
10 000
8 000
2 000
0
0.5
10.5
图2
16、由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金。他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价 (万元/台)与月次 ( 且为整数)满足关系是式: ,一年后发现实际每月的销售量 (台)与月次 之间存在如图所示的变化趋势.
⑴ 直接写出实际每月的销售量 (台)与月次 之间
的函数关系式;
⑵ 求前三个月中每月的实际销售利润 (万元)与月
次 之间的函数关系式;
⑶ 试判断全年哪一个月的的售价最高,并指出最高售价;
⑷ 请通过计算说明他这一年是否完成了年初计划的销售量.
36
4月
20
40
O
(台)
12月
17、如图(十二),直线 的解析式为 ,它与 轴、 轴分别相交于 两点.平行于直线 的直线 从原点 出发,沿 轴的正方形以每秒1个单位长度的速度运动,它与 轴、 轴分别相交于 两点,设运动时间为 秒( ).
(1)求 两点的坐标;
(2)用含 的代数式表示 的面积 ;
(3)以 为对角线作矩形 ,记 和 重合部分的面积为 ,
O
M
A
P
N
y
l
m
x
B
O
M
A
P
N
y
l
m
x
B
E
P
F
图十二
①当 时,试探究 与 之间的函数关系式;
②在直线 的运动过程中,当 为何值时, 为 面积的 ?
18、如图,直线 分别与 轴、 轴交于 两点,直线 与 交于点 ,与过点 且平行于 轴的直线交于点 .点 从点 出发,以每秒1个单位的速度沿 轴向左运动.过点 作 轴的垂线,分别交直线 于 两点,以 为边向右作正方形 ,设正方形 与 重叠部分(阴影部分)的面积为 (平方单位).点 的运动时间为 (秒).
(1)求点 的坐标.(1分)
(2)当 时,求 与 之间的函数关系式.(4分)
(3)求(2)中 的最大值.(2分)
(4)当 时,直接写出点 在正方形 内部时 的取值范围.
y
x
D
N
M
Q
B
C
O
P
E
A
19、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.
(1)甲、乙两地之间的距离为 8 km,乙、丙两地之间的距离为 2 km;
(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?
(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.
2·
4·
6·
8·
S(km)
2
0
t(h)
A
B
20、如图,直线 与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为 ,正方形OCMD与△AOB重叠部分的面积为S.试求S与 的函数关系式并画出该函数的图象.
B
x
y
M
C
D
O
A
图(1)
B
x
y
O
A
图(2)
B
x
y
O
A
图(3)
21、如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足 .
x
B′
B
A
y
C
D
O
⑴求B、C两点的坐标.
⑵把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式.
⑶在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出
P 点坐标;若不存在,请说明理由.
22、我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费y(元)与用水量x(吨)之间的函数关系.
(1)小明家五月份用水8吨,应交水费 元;
(2)按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨?
23、小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在天一阁查阅资料的时间为 分钟,小聪返回学校的速度为 千米/分钟.
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
24、一方有难,八方支援.2010年4月14日青海玉树发生地震,全国各地积极运送物资支援灾区.现有甲、乙两车要从M地沿同一公路运输救援物资往玉树灾区的N地,乙车比甲车先行1小时,设甲车与乙车之间的路程为y(km),甲车行驶的时间为t(h),y(km)与t(h)之间的函数关系的图象如图所示.结合图象解答下列问题(假设甲、乙两车的速度始终保持不变):
(1)乙车的速度是 km/h;
(2)求甲车的速度和a的值.
25、一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.
(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;
(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图象.
26、小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.
(1)小李到达甲地后,再经过 小时小张到达乙地;小张骑自行车的速度是 千米/小时.
(2)小张出发几小时与小李相距15千米?
(3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案)
27、某企业在生产甲、乙两种节能产品时需用A、B两种原料,生产每吨节能产品所需原料的数量如下表所示:
本次销售甲、乙两种产品的利润m(万元)与销售量n(吨)之间的函数关系如图所示.已知该企业生产了甲种产品x吨和乙种产品y吨,共用去A原料200吨.
(1)写出x与y满足的关系式;
(2)为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B原料多少吨?
28、在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为 km,a= ;
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
29、为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如图:
(1)李明从家出发到出现故障时的速度为 米/分钟;
(2)李明修车用时 分钟;
(3)求线段BC所对应的函数关系式.(不要求写出自变量的取值范围)
30、我国青海省玉树地区发生强烈地震以后,国家立即启动救灾预案,积极展开向灾区运送救灾物资和对伤员的救治工作.已知西宁机场和玉树机场相距800千米,甲、乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB、CD分别表示甲、乙两机离玉树机场的距离S(百千米)和所用去的时间t(小时)之间的函数关系的图象(注:为了方便计算,将平面直角坐标系中距离S的单位定为(百千米)).观察图象回答下列问题:
(1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米?
(2)求甲、乙两机各自的S与t的函数关系式;
(3)甲、乙两机相遇时,乙机飞行了几小时?离西宁机场多少千米?
31、如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3 ).动点P从A点开始沿折线AO﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1, ,2(长度单位/秒).一直尺的上边缘l从x轴的位置开始以 (长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO﹣OB﹣BA运动一周时,直线l和动点P同时停止运动.
请解答下列问题:
(1)过A,B两点的直线解析式是
(2)当t﹦4时,点P的坐标为 ;当t﹦ ,点P与点E重合;
(3)①作点P关于直线EF的对称点P′.在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?
②当t﹦2时,是否存在着点Q,使得△FEQ∽△BEP?若存在,求出点Q的坐标;若不存在,请说明理由.
32、已知直线 与x轴,y轴分别交于A、B。现以线段AB为边在第一象限内作一个正三角形ABC,如果在第一象限内有一点 且 ,求m的值。
33、已知直线 经过点(-1,6)和(1,2),它和x轴、y轴分别交于B和A;直线 经过点(2,-4)和(0,-3),它和x轴、y轴的交点分别是D和C。
(1)求直线 和 的解析式;
(2)求四边形ABCD的面积;
(3)设直线 与 交于点P,求△PBC的面积。
34、如图,直线PA是一次函数 的图象,直线PB是一次函数 的图象。
(1)用m、n表示A、B、P的坐标;
(2)设PA交y轴于Q,若AB=2,四边形PQOB的面积为 ,求P点坐标和直线PA、PB的解析式。
35、已知直线 与x轴交于A,与y轴交于B点;直线l经过原点,与线段AB交于C,且把△ABO的面积分为1:2两部分,求直线l的解析式。
36、如图(15),在直角坐标系中,已知点 的坐标为 ,将线段 按逆时针方向旋转 ,再将其长度伸长为 的2倍,得到线段 ;又将线段 按逆时针方向旋转 ,长度伸长为 的2倍,得到线段 ;如此下去,得到线段 , , , ( 为正整数)
(1)求点 的坐标;
(2)求 的面积;
(3)我们规定:把点 ( )的横坐标 、纵坐标 都取绝对值后得到的新坐标 称之为点 的“绝对坐标”.
根据图中点 的分布规律,请你猜想点 的“绝对坐标”,并写出来.
37、如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
38、如图12,直角梯形 中, ,动点 从点 出发,沿 方向移动,动点 从点 出发,在 边上移动.设点 移动的路程为 ,点 移动的路程为 ,线段 平分梯形 的周长.
(1)求 与 的函数关系式,并求出 的取值范围;
(2)当 时,求 的值;
图12
(3)当 不在 边上时,线段 能否平分梯形 的面积?若能,求出此时 的值;若不能,说明理由.
39、如图,直线 与 轴、 轴的正半轴分别交于A、B两点,且OA、OB的长是方程 的两个根(OB>OA),P为直线 上A、B两点之间的一动点(不与A、B重合),PQ∥OB交OA于点Q。
(1)求tan∠BAO的值;
(2)若 时,请确定点P在AB上的位置,并求出线段PQ的长。
(3)在 轴上是否存在点M,使△MPQ为等腰直角三角形。若存在,请直接写出点M的坐标,若不存在,请说明理由。
40、如图,已知一次函数 的图像与 轴、 轴分别交于A、B两点,点C、D都在 轴的正半轴上,D点坐标为(2,0),若两钝角∠ABD=∠BCD。
(1)求直线BC的解析式;
(2)若P是直线BD上一点,且 ,求P点坐标。
热心网友
时间:2023-10-09 19:38
you
热心网友
时间:2023-10-09 19:38
有追问告诉我呗~!