勾股定理‘
发布网友
发布时间:2022-04-23 09:46
我来回答
共2个回答
热心网友
时间:2023-10-10 00:43
勾股定理主要用于计算直角三角形的边,知道任意两边求第三边,在做题过程中,几乎只要见到求边的问题,可以构造直角三角形来解决。
热心网友
时间:2023-10-10 00:44
勾股定理
编辑
[gōu gǔ dìng lǐ]
勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
目录
1内容
2依据
《周髀算经》
《几何原本》
3历史
4应用
1内容
勾三股四弦五
文字表述:在任何一个的直角三角形(Rt△)中,两条直角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相减与最短边的平方相等)。
勾股定理示意图
数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么。[1]
推广定理:勾股定理的逆定理。
2依据
几个文明古国都先后研究过这条定理,远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。我国也是最早了解勾股定理的国家之一。三千多年前,周朝数学家就提出“勾三、股四、弦五”,它被记载于《周髀算经》中。[2]
毕达哥拉斯定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理证明,相传是在西周由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
虽然这个定理以后来的希腊数学家毕达哥拉斯(大约公元前540年)的名字命名,但有证据表明,该定理的历史可以追溯到毕达哥拉斯之前1000年的古巴比伦的汉谟拉比年代.把该定理名字归于毕达哥拉斯,大概是因为他第一个对自己在学校中所写的证明作了记录.毕达哥拉斯定理的结论和它的证明,遍及于世界的各个大洲、各种文化及各个时期.事实上,这一定理的证明之多,是其他任何发现所无法比拟的。[3]
中国成书于公元前1世纪的《周髀算经》第一章中指出:昔者周公(注:公元前11世纪周武王的大臣)问于商高(注:学者)曰:“窃闻科大夫善数也,请问古者包牺立周历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法,出于方圆。圆出于方,方出于矩,矩出于九九八十一。故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”
青朱出入图(2张)
其主要意思是,周公问:”我听说你对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么关于天的高度和地面的一些测量的数据是怎么样得到的呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。”这就是“勾三、股四、弦五”的由来。
《周髀算经》另有记载:周髀长八尺,夏至之日晷一尺六寸。髀者,股也,正晷者,勾也。正南千里,勾一尺五寸,正北千里,勾一尺七寸。日益表南,晷日益长。候勾六尺,即取竹,空经一寸,长八尺,捕影而观之,室正掩日,而日应空之孔。由此观之,率八十寸而得径寸,故此勾为首,以髀为股,从髀至日下六万里而髀无影,从此以上至日,则八万里。这段文字描述了中国古代人民如何利用勾股定理在科学上进行实践。
基于上述渊源,中国学者一般把此定理叫做“勾股定理”或“商高定理”。
勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有着名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常着名。
《周髀算经》
《周髀算经》中关于勾股定理的证明:
“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。
《周髀算经》证明步骤
“故折矩①,以为句广三,股修四,径隅五。”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。 “
②既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。 “
两矩共长③二十有五,是谓积矩。”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。
注意:
① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。
② “既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。经陈良佐、李国伟、李继闵、曲安京等学者研究,“既方之,外半其一矩”更符合逻辑。
③ 长指的是面积。古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”。赵爽注称:“两矩者,句股各自乘之实。共长者,并实之数。
由于年代久远,周公弦图失传,传世版本只印了赵爽弦图(造纸术在汉代才发明)。所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。 其实不然,摘录赵爽注释《周髀算经》时所做的《句股圆方图》(即赵爽弦图)——“句股各自乘,并之为弦实,开方除之即弦。案:弦图又可以句股相乘为朱实二,倍之为朱实四,以句股之差自相乘为中黄实,加差实亦成弦实。”注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明。[4]
用赵爽弦图证明勾股定理的数学描述为:
ABDE为AB=BD=DE=AE=C的正方形(右图
赵爽弦图 证明示意图
),很显然:正方形ABDE 的面积:
=(4个直角三角形的面积)+中间方孔的面积
∵
∴
(a:勾,b:股,c:弦)
简单来说
a 是3,b 是 4,c不知道。3^2+4^2=3x3+4x4=9+16=25 25就是c的平方,再用根号,那c的长就是5。
《几何原本》
在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。
设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在正式的证明中,需要四个辅助定理如下:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理)
三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。
证明的概念为:
把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。
其证明如下:
设△ABC为一直角三角形,其直角为CAB。
几何原本 证明示意图
其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。
分别连接CF、AD,形成两个三角形BCF、BDA。
∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。
∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。
因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须全等于△FBC。
因为 A 与 K 和 L在同一直线上,所以四方形 BDLK 必须二倍面积于△ABD。
因为C、A和G在同一直线上,所以正方形BAGF必须二倍面积于△FBC。
因此四边形 BDLK 必须有相同的面积 BAGF = (AB)²。
同理可证,四边形 CKLE 必须有相同的面积 ACIH =(AC)²。
把这两个结果相加, (AB)²+(AC)² = BD×BK + KL×KC
由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC
由于CBDE是个正方形,因此(AB)² + (AC)² =(BC)²。
此证明是于欧几里得《几何原本》一书第1.47节所提出的。[2]
3历史
毕达哥斯拉定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。埃及称为埃及三角形。
毕达哥拉斯实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查。相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。可以说真伪难辨。这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上。他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了。至于希腊科学的起源只是近一二百年才有更深入的研究。因此,毕达哥拉斯定理这个名称一时半会儿改不了。不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,而更普遍地则称为勾股定理。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
古埃及人用这样的方法画直角勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。
中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。
还有的国家称勾股定理为“平方定理”。
在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.
商高定理商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商 高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的勾股定理.关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。
4应用
勾股定理是欧氏几何中平面单形——三角形边角关系的重要表现形式,虽然是在直角三角形的情形,但基本不失一般性,因此,欧几里得在《原本》中的第一卷,就以勾股定理为核心展开,一方面奠定欧氏公理体系的架构,另一方面仅仅围绕勾股定理的证明,揭示了面积的自然基础,第一卷共48个命题,以勾股定理(第47个命题)及其逆定理(第48个命题)结束,并在后续第二卷中,自然将勾股定理推广大任意三角形的情形,给出了余弦定理的完整形式。
勾股定理是人们认识宇宙中形的规律的自然起点,无论在东西方文明起源过程中,都有着很多动人的故事。中国古代数学著作《九章算术》的第九章即为勾股术,并且整体上呈现出明确的算法和应用性特点,这与欧几里得《原本》第一章的毕达哥拉斯定理(勾股弦定理)及其显现出来的推理和纯理性特点恰好对比的煜煜生辉的两极,令人感慨。
从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,方一丈,葭生其*,出水一尺,引葭赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。[5]
生活应用:
勾股定理在生活中的应用也较广泛,举例说明如下:
1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:
第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;
第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;
第三,屏幕底部应离观众席所在地面最少122厘米。
屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。
2、2005年珠峰高度复测行动。
测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。
通俗来说,就是分三步走:
第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;
第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;
第三步,获得的高程数据要进行重力、大气等多方面[5]的改正计算,最终确定珠峰高程测量的有效数据。[5]